

Python – List

 Python offers a range of compound datatypes often referred to as sequences.

 List is one of the most frequently used and very versatile datatype used in
Python.

How to create a list?

In Python programming, a list is created by placing all the items (elements) inside a
square bracket [], separated by commas.

It can have any number of items and they may be of different types (integer, float,
string etc.).

empty list

my_list = []

list of integers

my_list = [1, 2, 3]

list with mixed datat’ypes

my_list = [1, "Hello", 3.4]

Also, a list can even have another list as an item. This is called nested list.

nested list

my_list = ["mouse", [8, 4, 6], ['a']]

How to access elements from a list?

There are various ways in which we can access the elements of a list.

List Index

We can use the index operator [] to access an item in a list. Index starts from 0. So,
a list having 5 elements will have index from 0 to 4.

Trying to access an element other that this will raise an IndexError. The index must
be an integer. We can't use float or other types, this will result into TypeError.

Nested list are accessed using nested indexing.

my_list = ['p','r','o','b','e']

Output: p

print(my_list[0])

Output: o

print(my_list[2])

Output: e

print(my_list[4])

Error! Only integer can be used for indexing

my_list[4.0]

Nested List

n_list = ["Happy", [2,0,1,5]]

Nested indexing

Output: a

print(n_list[0][1])

Output: 5

print(n_list[1][3])

Negative indexing

Python allows negative indexing for its sequences. The index of -1 refers to the last
item, -2 to the second last item and so on.

my_list = ['p','r','o','b','e']

Output: e

print(my_list[-1])

Output: p

print(my_list[-5])

How to slice lists in Python?

We can access a range of items in a list by using the slicing operator (colon).

my_list = ['p','r','o','g','r','a','m','i','z']

elements 3rd to 5th

print(my_list[2:5])

elements beginning to 4th

print(my_list[:-5])

elements 6th to end

print(my_list[5:])

elements beginning to end

print(my_list[:])

Slicing can be best visualized by considering the index to be between the elements
as shown below. So if we want to access a range, we need two index that will slice
that portion from the list.

How to change or add elements to a list?

List are mutable, meaning, their elements can be changed unlike string or tuple.

We can use assignment operator (=) to change an item or a range of items.

mistake values

odd = [2, 4, 6, 8]

change the 1st item

odd[0] = 1

Output: [1, 4, 6, 8]

print(odd)

change 2nd to 4th items

odd[1:4] = [3, 5, 7]

Output: [1, 3, 5, 7]

print(odd)

 We can add one item to a list using append() method

 or add several items using extend()method.

odd = [1, 3, 5]

odd.append(7)

Output: [1, 3, 5, 7]

print(odd)

odd.extend([9, 11, 13])

Output: [1, 3, 5, 7, 9, 11, 13]

print(odd)

We can also use + operator to combine two lists. This is also called
concatenation.

The * operator repeats a list for the given number of times.

odd = [1, 3, 5]

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/tuple

Output: [1, 3, 5, 9, 7, 5]

print(odd + [9, 7, 5])

#Output: ["re", "re", "re"]

print(["re"] * 3)

Furthermore, we can insert one item at a desired location by using the
method insert() or insert multiple items by squeezing it into an empty slice of a list.

odd = [1, 9]

odd.insert(1,3)

Output: [1, 3, 9]

print(odd)

odd[2:2] = [5, 7]

Output: [1, 3, 5, 7, 9]

print(odd)

How to delete or remove elements from a
list?

We can delete one or more items from a list using the keyword del. It can even
delete the list entirely.

my_list = ['p','r','o','b','l','e','m']

delete one item

del my_list[2]

Output: ['p', 'r', 'b', 'l', 'e', 'm']

print(my_list)

delete multiple items

del my_list[1:5]

Output: ['p', 'm']

print(my_list)

delete entire list

del my_list

Error: List not defined

print(my_list)

We can use remove() method to remove the given item or pop() method to remove
an item at the given index.

The pop() method removes and returns the last item if index is not provided. This
helps us implement lists as stacks (first in, last out data structure).

We can also use the clear() method to empty a list.

my_list = ['p','r','o','b','l','e','m']

my_list.remove('p')

Output: ['r', 'o', 'b', 'l', 'e', 'm']

print(my_list)

Output: 'o'

print(my_list.pop(1))

Output: ['r', 'b', 'l', 'e', 'm']

print(my_list)

Output: 'm'

print(my_list.pop())

Output: ['r', 'b', 'l', 'e']

print(my_list)

my_list.clear()

Output: []

print(my_list)

Finally, we can also delete items in a list by assigning an empty list to a slice of
elements.

>>> my_list = ['p','r','o','b','l','e','m']

>>> my_list[2:3] = []

>>> my_list

['p', 'r', 'b', 'l', 'e', 'm']

>>> my_list[2:5] = []

>>> my_list

['p', 'r', 'm']

Python List Methods

Methods that are available with list object in Python programming are tabulated
below.

They are accessed as list.method(). Some of the methods have already been used
above.

Python List Methods

append() - Add an element to the end of the list

extend() - Add all elements of a list to the another list

insert() - Insert an item at the defined index

remove() - Removes an item from the list

pop() - Removes and returns an element at the given index

clear() - Removes all items from the list

index() - Returns the index of the first matched item

count() - Returns the count of number of items passed as an argument

sort() - Sort items in a list in ascending order

reverse() - Reverse the order of items in the list

copy() - Returns a shallow copy of the list

Some examples of Python list methods:

my_list = [3, 8, 1, 6, 0, 8, 4]

Output: 1

print(my_list.index(8))

Output: 2

print(my_list.count(8))

my_list.sort()

Output: [0, 1, 3, 4, 6, 8, 8]

print(my_list)

my_list.reverse()

Output: [8, 8, 6, 4, 3, 1, 0]

print(my_list)

https://www.programiz.com/python-programming/methods/list
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/copy

List Comprehension: Elegant way to
create new List

List comprehension is an elegant and concise way to create new list from an existing
list in Python.

List comprehension consists of an expression followed by for statement inside
square brackets.

Here is an example to make a list with each item being increasing power of 2.

pow2 = [2 ** x for x in range(10)]

Output: [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

print(pow2)

This code is equivalent to

pow2 = []

for x in range(10):

 pow2.append(2 ** x)

A list comprehension can optionally contain more for or if statements. An
optional ifstatement can filter out items for the new list. Here are some examples.

>>> pow2 = [2 ** x for x in range(10) if x > 5]

>>> pow2

[64, 128, 256, 512]

>>> odd = [x for x in range(20) if x % 2 == 1]

>>> odd

[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]

>>> [x+y for x in ['Python ','C '] for y in ['Language','Programming']]

['Python Language', 'Python Programming', 'C Language', 'C
Programming']

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/if-elif-else

Other List Operations in Python

List Membership Test

We can test if an item exists in a list or not, using the keyword in.

my_list = ['p','r','o','b','l','e','m']

Output: True

print('p' in my_list)

Output: False

print('a' in my_list)

Output: True

print('c' not in my_list)

Iterating Through a List

Using a for loop we can iterate though each item in a list.

for fruit in ['apple','banana','mango']:

 print("I like",fruit)

Built-in Functions with List

Built-in functions
like all(), any(), enumerate(), len(), max(), min(), list(), sorted() etc. are
commonly used with list to perform different tasks.

Built-in Functions with List

Function Description

all() Return True if all elements of the list are true (or if the list is empty).

any()

Return True if any element of the list is true. If the list is empty, return

False.

https://www.programiz.com/python-programming/methods/built-in/all
https://www.programiz.com/python-programming/methods/built-in/any

enumerate()

Return an enumerate object. It contains the index and value of all the items

of list as a tuple.

len() Return the length (the number of items) in the list.

list() Convert an iterable (tuple, string, set, dictionary) to a list.

max() Return the largest item in the list.

min() Return the smallest item in the list

sorted() Return a new sorted list (does not sort the list itself).

sum() Return the sum of all elements in the list.

https://www.programiz.com/python-programming/methods/built-in/enumerate
https://www.programiz.com/python-programming/methods/built-in/len
https://www.programiz.com/python-programming/methods/built-in/list
https://www.programiz.com/python-programming/methods/built-in/max
https://www.programiz.com/python-programming/methods/built-in/min
https://www.programiz.com/python-programming/methods/built-in/sorted
https://www.programiz.com/python-programming/methods/built-in/sum

