
Python
Fundamental

Token
• Keywords

• Literals

– String literals

– Numeric literals

– Boolean Literals

– Special literal None

• Data Types

• Operators

• Identifiers

• Punctuators

Keywords

• Keywords are the reserved words in Python.

• We cannot use a keyword as variable name, function name or any
other identifier. They are used to define the syntax and structure of
the Python language.

• In Python, keywords are case sensitive.

• There are 33 keywords in Python 3.3. This number can vary slightly
in course of time.

• All the keywords except True, False and None are in lowercase and
they must be written as it is. The list of all the keywords are given
below

Keywords

Keywords in Python programming language

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Data Types
• Booleans

o are either True or False.

• Numbers

o can be integers (1 and 2), floats (1.1 and 1.2), fractions

(1/2 and 2/3), or even complex numbers.

• Strings

o are sequences of Unicode characters, e.g. an html document.

• Bytes and byte arrays, e.g. a jpeg image file.

• Lists are ordered sequences of values

o a_list = ['a', 'b', 'mpilgrim', 'z', 'example']

• Tuples are ordered, immutable sequences of values.

• a_tuple = ("a", "b", "mpilgrim", "z", "example")

• Sets are unordered bags of unique values

o a_set = {1, 3, 6, 10, 15, 21, 28, 36, 45}

• Dictionaries are unordered bags of key-value pairs

o a_dict = {'server': 'db.diveintopython3.org', 'database': 'mysql'}

Number Data Types

• int (signed integers): They are often called just integers or ints, are
positive or negative whole numbers with no decimal point.

• long (long integers): Also called longs, they are integers of
unlimited size, written like integers and followed by an uppercase
or lowercase L.

• float (floating point real values) : Also called floats, they represent
real numbers and are written with a decimal point dividing the
integer and fractional parts. Floats may also be in scientific
notation, with E or e indicating the power of 10 (2.5e2 = 2.5 x
102 = 250).

• complex (complex numbers) : are of the form a + bJ, where a and
b are floats and J (or j) represents the square root of -1 (which is
an imaginary number). The real part of the number is a, and the
imaginary part is b. Complex numbers are not used much in
Python programming.

String Data Type

• String literals can be formed by enclosing a
text in the quotes. We can use both single as
well as double quotes for a String

• Single line

• Multiple line (Using back slash or triple
quotation)

Immutable and mutable data types
Immutable data type

• The Immutable types are those
that can never change their
values.

• NOTE: Although it may appear
that the value of variable do
change, but they don’t change
in the same place. A new
variable space is assigned at a
new memory space.

• Immutable types are:
– Integers
– Floating point numbers
– Booleans
– Strings
– Tuples

Mutable data type

• The mutable type are those
whose value change in
place.

• Mutable types are:
– Lists

– Dictionaries

>>> list = [10,20,30]

>>> list[1] = 40

>>> list

>>> [10,40,30]

The type() method

type(x) ##Where x is a already defined variable

print type(x)

To print on the output window:

Syntax:

The method type() returns the type of the passed variable. If passed
variable is dictionary then it would return a dictionary type.

>>> name = “Eddie”

>>> age = 34

>>> print “name is”,type(name),”age is”,type(age)

name is <type 'str'> age is <type 'int'>

Example:

Variables - Named labels whose values
can be manipulated during program run.

Creating Variables-
>>> name = “Eddie”

>>> age = 34

Dynamic Typing

• A variable pointing to a value of certain type
can be made to point to a value/object of
different type. This is called Dynamic Typing.

>>> x = 10

>>> type(x)

<type 'int'>

>>> x = “summer”

<type 'str'>

Caution: Although Python is comfortable with changing
types of a variable, the programmer is responsible for
ensuring right types for certain type of operations.

Type Casting in Python

• To convert into integer
• int(_)

• To convert into string
• str(_)

• To convert into float
• float(_)

• To convert into Boolean
• bool(_)
• Only 0 give false rest any number give true.

• To convert asci code into string
• chr(_)
• Not exactly type casting

Operators

• The operations being carried out on data are represented by
operators. The symbols that trigger the operation / action on
data are called operators. The operation (specific task) are
represented by operators and the objects of the operations are
referred to as Operands.

Type of operators in Python

Arithmetic operators

Comparison (Relational) operators

Logical (Boolean) operators

Bitwise operators

Assignment operators

Special operators

https://www.programiz.com/python-programming/operators#arithmetic_operators
https://www.programiz.com/python-programming/operators#comparision_operators
https://www.programiz.com/python-programming/operators#logical_operators
https://www.programiz.com/python-programming/operators#bitwise_operators
https://www.programiz.com/python-programming/operators#assignment_operators
https://www.programiz.com/python-programming/operators#special_operators

Arithmetic Operators

Operator Meaning Example

+ Add two operands or unary plus
x + y
+2

- Subtract right operand from the left or unary minus
x - y
-2

* Multiply two operands x * y

/
Divide left operand by the right one (always results
into float)

x / y

%
Modulus - remainder of the division of left operand by
the right

x % y (remainder of
x/y)

//
Floor division - division that results into whole number
adjusted to the left in the number line

x // y

** Exponent - left operand raised to the power of right x**y (x to the power y)

Comparison Operator

Operator Meaning Example

>
Greater that - True if left operand is greater
than the right

x > y

<
Less that - True if left operand is less than the
right

x < y

== Equal to - True if both operands are equal x == y

!= Not equal to - True if operands are not equal x != y

>=
Greater than or equal to - True if left operand
is greater than or equal to the right

x >= y

<=
Less than or equal to - True if left operand is
less than or equal to the right

Logical Operator

Operator Meaning Example

and
True if both the operands
are true

x and y

or
True if either of the
operands is true

x or y

not
True if operand is false
(complements the
operand)

not x

Bitwise Operator

Operator Meaning Example

& Bitwise AND x& y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x>> 2 = 2 (0000 0010)

<< Bitwise left shift x<< 2 = 40 (0010 1000

Assignment Operator

Operator Example Equivatent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

//= x //= 5 x = x // 5

**= x **= 5 x = x ** 5

&= x &= 5 x = x & 5

|= x |= 5 x = x | 5

^= x ^= 5 x = x ^ 5

>>= x >>= 5 x = x >> 5

<<= x <<= 5 x = x << 5

Identity operators

• is and is not are the identity operators in
Python. They are used to check if two values
(or variables) are located on the same part of
the memory. Two variables that are equal
does not imply that they are identical

Operator Meaning Example

is
True if the operands are
identical (refer to the same
object)

x is True

is not
True if the operands are
not identical (do not refer
to the same object)

x is not True

Membership operators

• in and not in are the membership operators in Python.
They are used to test whether a value or variable is found
in a sequence (string, list, tuple, set and dictionary).

• In a dictionary we can only test for presence of key, not
the value.

• We can’t check an integer type in a string or in an
character array.

Operator Meaning Example

in
True if value/variable is
found in the sequence

5 in x

not in
True if value/variable is not
found in the sequence

5 not in x

Identifiers

• Convention for identifier is:
– An identifier is an arbitrary long sequence of letter and

digits.

– The first character must be a letter; the underscore (_)
counts as a letter.

– Upper and lower-case letters are different. All characters
are significant.

– Digits can be part of identifier but can’t be as the first
character.

– An identifier must not be a keyword of python.

– An identifier can’t contain any special character.

Creating Variables

• Variables are Named labels whose values can be
manipulated during program run.

>>> name = “Eddie”

>>> age = 34

Python Style Rules and Convention

 Statement Termination
Python does not use to terminate a statement. When you end a physical code-line by pressing Enter key, the
statement is considered terminated by default

 Avoid multiple statement in one line
Multiple statements can be written in one line using semicolon (;) but should be avoided.

 Maximum line length
Line length should be maximum 79 characters.

 Line and Indentation
Blocks of code are denoted by line indentation, which is enforced through 4 spaces (press Tab once) per
indentation level.

 Case Sensitivity
Python is case sensitive, so one has to be careful with keyword and identifier. Eg Print ”Hello” – will give
error while, print ”hello” -- will print hello.

Multiple Assignment

1. Assigning same value to multiple variable.

2. Assigning multiple values to multiple variable.

>>> a=b=c=10

>>> a, b, c = 10,20,30

A Program For Swapping value variable

>>> a, b= 10,20

>>> a,b=b,a

>>> a, b

(20,10)

Comments

• In Python, we use the hash (#) symbol to start
writing a comment.

• It extends up to the newline character.

• Triple quotes(‘’’ or “””) are generally used for
multi-line strings. But they can be used as
multi-line comment as well.

Object

• In python every entity that stores any
value or any type of data is called Object.

• A object has three key attributes:
– The type of an object: The type of an object defines the

operation can be performed on an object .

– The value of an object: It is the data -item contained in
object.

– The id of an object: The memory location of an object.

