
User authentication, passwords

User Authentication

 Nowadays most internet applications are
available only for registered (paying) users

 How do we restrict access to our website
only to privileged users?

 Use login forms for user authentication

A simple login script
<html>
<head><title>User Authentication</title></head>
<body>
<?php
$user = strtolower($_POST["user"]);
$pass = strtolower($_POST["pass"]);
if (isset($user) && isset($pass) && $user=="php5" && $pass=="iscool") {
?>

<h1>Welcome! Here is the truth about aliens visiting Earth ...</h1>
<?php

} else {
?>

<h3>Please login</h3>
<form method=post>

User name: <input type=text name=user />

Password: <input type=password name=pass />

<input type=submit name=submit value=Login />
</form>
<?php

}
?>
</body>
</html>

What are the limitations of this?

Limitations of simple login
script

 It only protects the page on which it is
included.

 We could include it on all pages we wish to
protect using something like:

include “login.php”

 Clearly not a good solution!

include

vars.php
<?php

$color = 'green';
$fruit = 'apple';

?>

test.php
<?php

echo "A $color $fruit"; // A

include 'vars.php';

echo "A $color $fruit"; // A green apple

?>

When a file is included,
the code it contains
inherits the variable
scope of the line on
which the include occurs.

PHP Sessions

 Create a true login “session”

 Use session variables to tag a “logged in”
status

Login script using sessions
<?php
session_start();
if (isset($_POST["submit"]))// Have the credentials been submitted?
{
$user = strtolower($_POST["user"]);
$pass = strtolower($_POST["pass"]);
if ($user=="dug" && $pass=="paradise") {

$_SESSION["username"] = $user;
}
else {

echo "<p>Login incorrect!";
}

} ?>

<html><head><title>Authentication</title></head><body>
<?php
if (isset($_SESSION["username"])) {

echo "<p>You are logged in";
} else {
?>
<h3>Please login</h3>
<form method=post>
User name: <input type=text name=user />

Password: <input type=password name=pass />

<input type=submit name=submit value=Login />
</form>
<?php } ?>

More Advanced logins

 Redirect after logging in

 Store login information for registered users

 Take login information from a file storing usernames
and passwords of registered users

 Store this information in a database (see later)

 Raises issues of data security.

Part 1: Server Configuration:
httpd.conf

Apache

 Authentication:

 Verify if the user/passwd correct

 Authorization:

 Once authenticated, does user have permission?

 Access control

 Grant or deny access based on some criteria

 e.g., IP address, group name, domain ...

File-based authentication

 Apache has a module that provides authentication

 mod_auth_basic

 Similar to /etc/passwd in Unix

 Entries look like admin:kajsJjkh97U (encrypted)

 To add a user (Linux and Windows)

 htpasswd -c <file> <userid>

 This creates a new file with encrypted passwords

 htpasswd <file> <userid2>

 Appends other users

Creating a user password file

C:\Program Files (x86)\EasyPHP-5.3.3\apache\bin>htpasswd -c password napoleon

Automatically using MD5 format.
New password: ********
Re-type new password: ********
Adding password for user napoleon

SYNTAX: htpasswd -c <file> <userid>

To create the file, use the
htpasswd utility that

came with Apache. This
is located in the bin

directory of wherever you
installed Apache.

napoleon:$apr1$B5gzgGKw$AWVqtO2Romn5B4Zkc1bPk0

Filename: password

Encrypted password = hash key
or message digest
- One way

Create a new file
(will delete if it
exists already)

Settings for this Example

Note: The password file was moved to another directory.

Password File:

C:\Program Files (x86)\EasyPHP-5.3.3\apache\users\password

Restricted Directory:

C:\Program Files (x86)\EasyPHP-5.3.3\www\protected

Configuring Apache: httpd.conf

<Directory "${path}/www/protected">
AuthUserFile "${path}/apache/users/password"
AuthName "This is a protected area"
AuthGroupFile /dev/null
AuthType Basic
Require valid-user

</Directory>

Filename: httpd.conf

Directory you want to
restrict access to

File containing user
passwords

${path} = directory of
easyPHP

Putting authentication directives in a
<Directory> section, in your main server

configuration file, is the preferred way

Configuration Parameters

AuthUserFile The location of the password file.

AuthName

The authentication realm or name. This is

the message that the user will see in the

username/password pop-up.

AuthGroupFile The location of the group file, if any.

AuthType The type of authentication being used.

Require

What conditions need to be satisfied in

order to allow the user through. It could be

more than one condition.

Summary of Steps

1. Create a password file.

2. Move the password file into a separate folder.

3. Create a directory to be restricted access to.

4. Modify Apache’s httpd.conf.

5. Restart Apache webserver after making the
modifications.

Sample Run: Accessing a “protected”
section of your site

a dialog box
automatically pops-up
for user authentication

Sample Run: Invalid user name,
password!

Demo

• See Apache configuration, using EasyPHP.

• Find mod_auth_basic

Part 2: .htaccess files

.htaccess files should be used

only if you don't have access

to the main server configuration
file

The .htaccess file is used to override default server settings in particular folders (directories).

File-based authentication

 By default overriding is not set on

 httpd.conf (Linux: in /etc/httpd/conf/)

...

<Directory />

Options FollowSymLinks

AllowOverride None

</Directory>

...

If FollowSymlinks is NOT set at all, Apache has
to issue some extra system calls when looking
for a file.

For example, if you browse to the
/index.html document, Apache would look
for that file in your /www, /www/htdocs,
and /www/htdocs/index.html.

These additional system calls will add to the
latency. The system call results are not
cached, so they will occur on every request.

Follow Symbolic Links

http://www.maxi-pedia.com/FollowSymLinks

Specifies which directives
declared in the .htaccess file
can override earlier
configuration directives.

AccessFileName .htaccess

<Directory />
Options FollowSymLinks

AllowOverride None

Order Deny, Allow

Deny from All

</Directory>

<Directory "${path}/www/protected2">

AllowOverride All

Order allow,deny

Allow from all

</Directory>

Example: File-based authentication

Filename: httpd.conf

Note that the default Apache access
for <Directory /> is Allow from All. This
means that Apache will serve any file
mapped from an URL.

This is the recommended initial
setting!

We can then override this for
directories we want accessible.

Specifies which directives
declared in the .htaccess file
can override earlier
configuration directives.

http://httpd.apache.org/docs/2.2/mod/core.html#directory

Settings for this Example

Note: The password file was moved to another directory.

Password File:

C:\Program Files (x86)\EasyPHP-5.3.3\apache\users\password

Restricted Directory:

C:\Program Files (x86)\EasyPHP-5.3.3\www\protected2

Away from the folder open to the public (not in the document root)

AuthUserFile "C:/Program Files/EasyPHP-5.3.2i/apache/users/password"
AuthName "Protected Area 2"
AuthGroupFile /dev/null
AuthType Basic
Require valid-user

Example: .htaccess

Filename: .htaccess

Your .htaccess file should reside in this directory

Directory: C:\Program Files\EasyPHP-5.3.2i\www\protected2

Create the file using a temporary
name first, then rename it afterwards

implemented by mod_auth_basic.
(Alternatively, mod_auth_digest for
Digest), better but non-standard yet.

To implement authentication, you must also use the AuthName and Require directives. In
addition, the server must have an authentication-provider module such as mod_authn_file
and an authorization module such as mod_authz_user.

Sample Run

AuthUserFile "C:/Program Files/EasyPHP-5.3.2i/apache/users/password"
AuthName "Protected Area 2"
AuthGroupFile /dev/null
AuthType Basic
Require valid-user

Filename: .htaccess

.htaccess files

 Pros

 Easy way to allow authentication

 Control is given to users (developers)

 No admin

 Cons

 Performance: Apache reads and looks for
.htaccess files for every GET

 Wrong permissions (given by directory owners) can
lead to security problems

Another .htaccess Example (Linux)

 If allowed, the following .htaccess file overrides
authorisation:

<Directory /www/mysite/example>

IndexIgnore * ##does not allow dir lists

AuthType Basic

AuthName "Private Area" ##popup

AuthUserFile /usr/local/apache/passfile

AuthAuthoritative on

Require valid-user

</Directory>

Options FollowSymLinks

Order Allow, Deny

Options FollowSymLinks

• Websites are often set up in a way that they show
pictures and other content as being physically located
at some other location than they really are.

• If a visitor requests /system/files/images/image.png

then show him /pictures/image.png.“

• You might see something like

IMG SRC="/system/files/images/image.png" for the
location of some picture. This would be viewable by a
browser, but not downloadable as it resides in another
physical directory.

• Enable FollowSymLinks by default

Follow Symbolic Links

• Order allow, deny is a setting in your Apache web
server configuration that is used to restrict access
to certain directories (folders) or even globally.

• Configuring who can access your directories is
very important for your web site security.

• Order allow,deny is one way to restrict who can
see what.

Order Allow, Deny

Restricting access

• The Allow directive affects which hosts "can
access" an area of the server. Access is usually
controlled by hostname, IP address, or IP address
range.

•The Deny directive "restricts access" to the server.
Restrictions can be based again on hostname, IP
address, or environment variables.

• We can set the Order directive in two ways:
o Order allow, deny
o Order deny, allow

Order Allow, Deny

Restricting access

Order Allow, Deny

Restricting access

• Order allow, deny tells your web server that the Allow rules
are processed before the Deny rules.
• If the client does not match the Allow rule or it does match
the Deny rule, then the client will be denied access.

• Order deny, allow means that the deny rules are processed
before the allow rules.
• If the client does not match the deny rule or it does match the
allow rule, then it will be granted access.

Order Allow, Deny

Example of Allow

Allow from example.com

• All hosts from this domain will be allowed.

• Allowed: abc.example.com

www.example.com.

Not Allowed: www.abcexample.com

• Only complete components are matched

• This configuration will cause the server to perform a
double reverse DNS lookup on the client IP address,
regardless of the setting of the HostnameLookups
directive.

• It will do a reverse DNS lookup on the IP address to
find the associated hostname, and then do a forward
lookup on the hostname to assure that it matches the
original IP address.

• Only if the forward and reverse DNS are consistent
and the hostname matches will access be allowed.

Order Allow, Deny

Example of Allow

http://httpd.apache.org/docs/2.0/mod/core.html#hostnamelookups

Allow from example.com

Order Allow, Deny

Example of Allow

Allow from 10.1.2.3

• You can define the access level also by providing the IP
address. In this example, just the host with just that IP address
would be allowed access.

Allow from 10.1

• All hosts from all subnets within 10.1.x.x would be allowed

access.

Order Allow, Deny

Example

<Directory "/www">
Order Allow, Deny
Deny from all
Allow from all

</Directory>

• In this case, your client would be denied access. Why?

• Apache first evaluates the Allow directive rules and then the
Deny directive rules.

• Allow from all would be executed first and then the Deny from
all would take place.

Order Deny, Allow

Example: order has been swapped

<Directory "/www">
Order Deny, Allow
Deny from all
Allow from all

</Directory>

• The configuration above would result in your client being
allowed access because the Deny from all rule would be
processed first and the Allow from all rule would be processed
second.

Order Deny, Allow

Example: restricted server, intranet site

<Directory "/www">
Order Deny, Allow
Deny from all
Allow from example.com

</Directory>

• This configuration would restrict everyone from accessing
the /www directory except hosts in the example.com domain.

• Abc.example.com would be allowed access

• www.myexample.com would be restricted.

• Only complete components are matched

Order Allow, Deny

Example: blocking someone from some

specific domain

<Directory "/www">
Order Allow, Deny
Allow from all
Deny from www.myattacker.com phishers.example.com

</Directory>

• The configuration provided above would give access to
everyone and restrict all hosts from the www.myattacker.com
and phishers.example.com domains.

Order Allow, Deny

What happens if you forget to provide specific
rules and use just the Order allow,deny directive

alone?

<Directory "/www">
Order Allow, Deny

</Directory>

• when you specify the Order allow,deny you also control the
default access state.

• The example above will Deny all access to the /www directory
because the default access state is set to Deny.

IndexIgnore
IndexIgnore relates to the default directory listing mechanism
that returns a directory listing for directories which do not contain
an index.html or other "index" file. If that file is present, then
IndexIgnore does not do anything.

IndexIgnore file [file] ...

• You can find the IndexIgnore directive in two places.
• httpd.conf Apache server configuration file
• .htaccess file

• If you edit IndexIgnore in your root .htaccess file, it will
affect all subdirectories as well. If you want to apply
your setting to a subdirectory only, then you have to add
a .htaccess file to that subdirectory and edit that.

• IndexIgnore relies on the mod_autoindex module. Without this
module enabled, no directory listings take place.

IndexIgnore

Examples

• Disable the readme.txt and .htaccess files from showing in
your directory listing.

IndexIgnore readme.txt .htaccess

IndexIgnore *

• Block the directory listing completely

Summary

 Methods for user authentication

 Simple login scripts

 HTTP authentication

 Authentication using sessions

• Enable FollowSymLinks by default

• The Allow and Deny directives are used to
specify which clients are or are not allowed
access to the server.

• The Order directive sets the default access
state, and configures how the Allow and Deny
directives interact with each other.

Summary

