
Object-Oriented PHP

Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram,

Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

PHP-Object Oriented Programming 2

LEARNING TOPICS

• Introduction to OOP’s

• Understanding Encapsulation

• OOP and Class

• Using objects in PHP Scripts

• Working with database connections as Objects

• Handling MYSQL Errors

• Executing SQL Statements

• Defining Custom PHP Classes

• Creating Class Definition
• Storing Classes in External Files
• Data Hiding

• Using Access Specifiers

• Serializing Objects

• Working With Member Functions

• Serialization Functions

PHP-Object Oriented Programming 3

Object-Oriented Programming

 Object-oriented programming (OOP) refers

to the creation of reusable software objects

that can be easily incorporated into multiple

programs

 An object refers to programming code and

data that can be treated as an individual unit

or component

 Objects are often also called components

PHP-Object Oriented Programming 4

Object-Oriented Programming

 Data refers to information contained within

variables or other types of storage structures

 The functions associated with an object are

called methods

 The variables that are associated with an

object are called properties or attributes

 Popular object-oriented programming

languages include C++, Java, and Visual

Basic

PHP-Object Oriented Programming 5

Object-Oriented Programming

Figure 11-1 Accounting program

PHP-Object Oriented Programming 6

Understanding Encapsulation

 Objects are encapsulated – all code and

required data are contained within the object

itself

 Encapsulated objects hide all internal code

and data

 An interface refers to the methods and

properties that are required for a source

program to communicate with an object

PHP-Object Oriented Programming 7

Understanding Encapsulation

 Encapsulated objects allow users to see only

the methods and properties of the object that

you allow them to see

 Encapsulation reduces the complexity of the

code

 Encapsulation prevents other programmers

from accidentally introducing a bug into a

program, or stealing code

PHP-Object Oriented Programming 8

Object-Oriented Programming and Classes

 The code, methods, attributes, and other
information that make up an object are
organized into classes

 An instance is an object that has been
created from an existing class

 Creating an object from an existing class is
called instantiating the object

 An object inherits its methods and properties
from a class — it takes on the characteristics
of the class on which it is based

PHP-Object Oriented Programming 9

Using Objects in PHP Scripts

 Declare an object in PHP by using the new

operator with a class constructor

 A class constructor is a special function

with the same name as its class that is called

automatically when an object from the class

is instantiated

 The syntax for instantiating an object is:

$ObjectName = new ClassName();

PHP-Object Oriented Programming 10

Using Objects in PHP Scripts

 The identifiers for an object name:

 Must begin with a dollar sign

 Can include numbers or an underscore

 Cannot include spaces

 Are case sensitive

$Checking = new BankAccount();

 Can pass arguments to many constructor

functions

$Checking = new BankAccount(01234587, 1021, 97.58);

PHP-Object Oriented Programming 11

Using Objects in PHP Scripts (continued)

 After an object is instantiated, use a hyphen
and a greater-than symbol (->) to access the

methods and properties contained in the

object

 Together, these two characters are referred to

as member selection notation

 With member selection notation append one

or more characters to an object, followed by

the name of a method or property

PHP-Object Oriented Programming 12

Using Objects in PHP Scripts (continued)

 With methods, include a set of parentheses at

the end of the method name, just as with

functions

 Like functions, methods can also accept

arguments

$Checking->getBalance();

$CheckNumber = 1022;

$Checking->getCheckAmount($CheckNumber);

PHP-Object Oriented Programming 13

Working with Database Connections as Objects

 Access MySQL database connections as

objects by instantiating an object from the
mysqli class

 To connect to a MySQL database server:

$DBConnect = mysqli_connect("localhost",

"dongosselin", "rosebud", "real_estate");

 To connect to the MySQL database server

using object-oriented style:

$DBConnect = new mysqli("localhost", "dongosselin",

"rosebud", "real_estate");

PHP-Object Oriented Programming 14

Instantiating and Closing a MySQL

Database Object

 This statement also uses the mysqli()

constructor function to instantiate a mysqli

class object named $DBConnect

$DBConnect = new mysqli("localhost",

"dongosselin","rosebud", "real_estate");

 To explicitly close the database connection,
use the close() method of the mysqli

class
$DBConnect->close();

PHP-Object Oriented Programming 15

Selecting a Database

 Select or change a database with the
mysqli_select_db() function

 Pass two arguments to the
mysqli_select_db() function:

1. The variable representing the database

connection

2. The name of the database you want to use

PHP-Object Oriented Programming 16

Selecting a Database (continued)

 An object-oriented version of the code:
$DBConnect = mysqli_connect("localhost", "dongosselin",

"rosebud");

$DBConnect->select_db("real_estate");

// additional statements that access or manipulate the

database

$DBConnect->close();

PHP-Object Oriented Programming 17

Handling MySQL Errors

 With object-oriented style, you cannot
terminate script execution with the die() or

exit() functions
$DBConnect = @mysqli_connect("localhost", "dongosselin",

"rosebud")

Or die("<p>Unable to connect to the database server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

PHP-Object Oriented Programming 18

Handling MySQL Errors

 With object-oriented style, check whether a
value is assigned to the
mysqli_connect_errno() or
mysqli_connect_error() functions and
then call the die() function to terminate script
execution

$DBConnect = @new mysqli("localhost", "dgosselin",

"rosebud");

if (mysqli_connect_errno())

die("<p>Unable to connect to the database

server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

PHP-Object Oriented Programming 19

Handling MySQL Errors

 For any methods of the mysqli class that

fail (as indicated by a return value of false),

terminate script execution by appending
die() or exit() functions to method call

statements
$DBName = "guitars";

@$DBConnect->select_db($DBName)

Or die("<p>Unable to select the database.</p>"

. "<p>Error code " . mysqli_errno($DBConnect)

. ": " . mysqli_error($DBConnect)) . "</p>";

PHP-Object Oriented Programming 20

Executing SQL Statements

 With object-oriented style, use the query()

method of the mysqli class

 To return the fields in the current row of a

resultset into an indexed array use:

 The mysqli_fetch_row() function

 To return the fields in the current row of a

resultset into an associative array use:

 The mysqli_fetch_assoc() function

PHP-Object Oriented Programming 21

Executing SQL Statements (continued)

$TableName = "inventory";

$SQLstring = "SELECT * FROM inventory";

$QueryResult = $DBConnect->query($SQLstring)

Or die("<p>Unable to execute the query.</p>"

. "<p>Error code “ . $DBConnect->errno

. ": “ . $DBConnect->error) . "</p>";

echo "<table width='100%‘ border='1'>";

echo "<tr><th>Make</th><th>Model</th>

<th>Price</th><th>Inventory</th></tr>";

$Row = $QueryResult->fetch_row();

do {

echo "<tr><td>{$Row[0]}</td>";

echo "<td>{$Row[1]}</td>";

echo "<td align='right'>{$Row[2]}</td>";

echo "<td align='right'>{$Row[3]}</td></tr>";

$Row = $QueryResult->fetch_row();

} while ($Row);

PHP-Object Oriented Programming 22

Defining Custom PHP Classes

 Data structure refers to a system for

organizing data

 The functions and variables defined in a class

are called class members

 Class variables are referred to as data

members or member variables

 Class functions are referred to as member

functions or function members

PHP-Object Oriented Programming 23

Defining Custom PHP Classes

 Classes:

 Help make complex programs easier to manage

 Hide information that users of a class do not need

to access or know about

 Make it easier to reuse code or distribute your

code to others for use in their programs

 Inherited characteristics allow you to build

new classes based on existing classes

without having to rewrite the code contained

in the existing one

PHP-Object Oriented Programming 24

Creating a Class Definition

 To create a class in PHP, use the class

keyword to write a class definition

 A class definition contains the data members

and member functions that make up the class

 The syntax for defining a class is:

class ClassName {

data member and member function definitions

}

PHP-Object Oriented Programming 25

Creating a Class Definition (continued)

 The ClassName portion of the class definition

is the name of the new class

 Class names usually begin with an uppercase
letter to distinguish them from other identifiers

 Within the class’s curly braces, declare the
data type and field names for each piece of
information stored in the structure

class BankAccount {

data member and member function definitions

}

$Checking = new BankAccount();

PHP-Object Oriented Programming 26

Creating a Class Definition

 Class names in a class definition are not
followed by parentheses, as are function
names in a function definition

$Checking = new BankAccount();

echo 'The $Checking object is instantiated from the '

. get_class($Checking) . " class.</p>";

 Use the instanceof operator to determine
whether an object is instantiated from a given
class

PHP-Object Oriented Programming 27

Storing Classes in External Files

 PHP provides the following functions that

allow you to use external files in your PHP

scripts:

 include()

 require()

 include_once()

 require_once()

 You pass to each function the name and path

of the external file you want to use

PHP-Object Oriented Programming 28

Storing Classes in External Files

 include() and require() functions both

insert the contents of an external file, called

an include file, into a PHP script

 include_once() and require_once()

functions only include an external file once

during the processing of a script

 Any PHP code must be contained within a
PHP script section (<?php ... ?>) in an

external file

PHP-Object Oriented Programming 29

Storing Classes in External Files

 Use the include() and include_once()
functions for files that will not prevent the
application from running

 Use the require() or require_once()
functions for files that will prevent the app
from running if not present

 External files can be used for classes and for
any type of PHP code or HTML code that you
want to reuse on multiple Web pages

 You can use any file extension you want for
include files

PHP-Object Oriented Programming 30

Collecting Garbage

 Garbage collection refers to cleaning up or

reclaiming memory that is reserved by a

program

 PHP knows when your program no longer

needs a variable or object and automatically

cleans up the memory for you

 The one exception is with open database

connections

PHP-Object Oriented Programming 31

Information Hiding

 Information hiding states that any class
members that other programmers,
sometimes called clients, do not need to
access or know about should be hidden

 Helps minimize the amount of information
that needs to pass in and out of an object

 Reduces the complexity of the code that
clients see

 Prevents other programmers from
accidentally introducing a bug into a program
by modifying a class’s internal workings

PHP-Object Oriented Programming 32

Using Access Specifiers

 Access specifiers control a client’s access
to individual data members and member
functions

 There are three levels of access specifiers in
PHP: public, private, and protected

 The public access specifier allows anyone
to call a class’s member function or to modify
a data member

PHP-Object Oriented Programming 33

Using Access Specifiers

 The private access specifier prevents
clients from calling member functions or
accessing data members and is one of the
key elements in information hiding

 Private access does not restrict a class’s
internal access to its own members

 Private access restricts clients from
accessing class members

PHP-Object Oriented Programming 34

Using Access Specifiers

 Include an access specifier at the beginning
of a data member declaration statement

class BankAccount {

public $Balance = 0;

}

 Always assign an initial value to a data
member when you first declare it
class BankAccount {

public $Balance = 1 + 2;

}

PHP-Object Oriented Programming 35

Serializing Objects

 Serialization refers to the process of converting
an object into a string that you can store for
reuse

 This enables the sharing of objects within the same
session used by multiple scripts

 Session variables could be used but you would need
to instantiate a new object and reassign the session
variable values to the data members each time you
call a script – this could be time consuming if the
object has dozens of data members

 Serialization stores both data members and
member functions into strings

PHP-Object Oriented Programming 36

Serializing Objects

 To serialize an object, pass an object name to the
serialize() function

$SavedAccount = serialize($Checking);

 To convert serialized data back into an object, you use
the unserialize() function

$Checking = unserialize($SavedAccount);

 Serialization is also used to store the data in large

arrays

 To use serialized objects between scripts, assign a

serialized object to a session variable
session_start();

$_SESSION('SavedAccount') = serialize($Checking);

PHP-Object Oriented Programming 37

Working with Member Functions

 Create public member functions for any

functions that clients need to access

 Create private member functions for any

functions that clients do not need to access

 Access specifiers control a client’s access to

individual data members and member

functions

PHP-Object Oriented Programming 38

Working with Member Functions

class BankAccount {

public $Balance = 958.20;

public function withdrawal($Amount) {

$this->Balance -= $Amount;

}

}

if (class_exists("BankAccount"))

$Checking = new BankAccount();

else

exit("<p>The BankAccount class is not available!</p>");

printf("<p>Your checking account balance is $%.2f.</p>",

$Checking->Balance);

$Cash = 200;

$Checking->withdrawal(200);

printf("<p>After withdrawing $%.2f, your checking account

balance is $%.2f.</p>", $Cash, $Checking->Balance);

PHP-Object Oriented Programming 39

Initializing with Constructor Functions

 A constructor function is a special function
that is called automatically when an object
from a class is instantiated
class BankAccount {

private $AccountNumber;

private $CustomerName;

private $Balance;

function __construct() {

$this->AccountNumber = 0;

$this->Balance = 0;

$this->CustomerName = "";

}

PHP-Object Oriented Programming 40

Initializing with Constructor Functions

 The __construct() function takes

precedence over a function with the same

name as the class

 Constructor functions are commonly used in

PHP to handle database connection tasks

PHP-Object Oriented Programming 41

Cleaning Up with Destructor Functions

 A default constructor function is called when

a class object is first instantiated

 A destructor function is called when the

object is destroyed

 A destructor function cleans up any resources

allocated to an object after the object is

destroyed

PHP-Object Oriented Programming 42

Cleaning Up with Destructor Functions

 A destructor function is commonly called in two ways:

 When a script ends

 When you manually delete an object with
the unset() function

 To add a destructor function to a PHP class, create a function
named __destruct()

function __construct() {

$DBConnect = new mysqli("localhost",

"dongosselin","rosebud", "real_estate")

}

function __destruct() {

$DBConnect->close();

}

PHP-Object Oriented Programming 43

Writing Accessor Functions

 Accessor functions are public member

functions that a client can call to retrieve or

modify the value of a data member

 Accessor functions often begin with the

words “set” or “get”

 Set functions modify data member values

 Get functions retrieve data member values

PHP-Object Oriented Programming 44

Writing Accessor Functions (continued)

class BankAccount {

private $Balance = 0;

public function setBalance($NewValue) {

$this->Balance = $NewValue;

}

public function getBalance() {

return $this->Balance;

}

}

if (class_exists("BankAccount"))

$Checking = new BankAccount();

else

exit("<p>The BankAccount class is not available!</p>");

$Checking->setBalance(100);

echo "<p>Your checking account balance is "

. $Checking->getBalance() . "</p>";

PHP-Object Oriented Programming 45

Serialization Functions

 When you serialize an object with the
serialize() function, PHP looks in the

object’s class for a special function named
__sleep()

 The primary reason for including a
__sleep() function in a class is to specify

which data members of the class to serialize

PHP-Object Oriented Programming 46

Serialization Functions

 If you do not include a __sleep() function
in your class, the serialize() function
serializes all of its data members

function __sleep() {

$SerialVars = array('Balance');

return $SerialVars;

}

 When the unserialize() function
executes, PHP looks in the object’s class for
a special function named __wakeup()

PHP-Object Oriented Programming 47

Serialization Functions

 Problem: Create a HitCounter class that
counts the number of hits to a Web page and
stores the results in a mySQL database’

 Use a private data member to store the
number of hits and include public set and get
member functions to access the private
counter member variable

PHP-Object Oriented Programming 48

HitCounter.php
<?php

class HitCounter {

private $DBConnect;

private $DBName = "newdb";

private $TableName = "hits";

private $Hits = 0;

function __construct() {

$this->DBConnect = @new mysqli("localhost", "root", "mypassword");

if (mysqli_connect_errno())

die("<p>Unable to connect to the database server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

}

function __destruct() {

$this->DBConnect->close();

}

public function setDatabase($Database) {

$this->DBName = $Database;

@$this->DBConnect->select_db($this->DBName)

Or die("<p>Unable to select the database.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($this->DBConnect)) . "</p>";

}

PHP-Object Oriented Programming 49

HitCounter.php
public function setTable($Table) {

$this->TableName = $Table;

}

public function setHits() {

$SQLstring = "UPDATE $this->TableName SET hits=$this->Hits WHERE
id=1";

$QueryResult = @mysqli_query($this->DBConnect, $SQLstring)

Or die("<p>Unable to perform the query.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($this->DBConnect)) . "</p>";

}

public function getHits() {

$SQLstring = "SELECT * FROM $this->TableName WHERE id=1";

$QueryResult = $this->DBConnect->query($SQLstring)

Or die("<p>Unable to perform the query.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($DBConnect)) . "</p>";

$Row = $QueryResult->fetch_row();

$this->Hits = $Row[1];

$this->Hits = $this->Hits + 1;

echo "<p>This page has received " . $this->Hits . " hits.</p>";

}

}

PHP-Object Oriented Programming 50

CountVisits.php
<?php

require_once("HitCounter.php");

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>Hit Counter</title>

</head>

<body>

<h3>Hit Counter</h3>

<?php

$Database = "newdb";

$Table = "hits";

if (class_exists("HitCounter")) {

$Counter = new HitCounter();

$Counter->setDatabase($Database);

}

else

exit("<p>The HitCounter class is not available!</p>");

$Counter->setTable($Table);

$Counter->getHits();

$Counter->setHits();

?>

</body>

</html>

Thank You

Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad

Website: www.sisoft.in Email:info@sisoft.in
Phone: +91-9999-283-283

http://www.sisoft.in/

