
Object-Oriented PHP

Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram,

Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

PHP-Object Oriented Programming 2

LEARNING TOPICS

• Introduction to OOP’s

• Understanding Encapsulation

• OOP and Class

• Using objects in PHP Scripts

• Working with database connections as Objects

• Handling MYSQL Errors

• Executing SQL Statements

• Defining Custom PHP Classes

• Creating Class Definition
• Storing Classes in External Files
• Data Hiding

• Using Access Specifiers

• Serializing Objects

• Working With Member Functions

• Serialization Functions

PHP-Object Oriented Programming 3

Object-Oriented Programming

 Object-oriented programming (OOP) refers

to the creation of reusable software objects

that can be easily incorporated into multiple

programs

 An object refers to programming code and

data that can be treated as an individual unit

or component

 Objects are often also called components

PHP-Object Oriented Programming 4

Object-Oriented Programming

 Data refers to information contained within

variables or other types of storage structures

 The functions associated with an object are

called methods

 The variables that are associated with an

object are called properties or attributes

 Popular object-oriented programming

languages include C++, Java, and Visual

Basic

PHP-Object Oriented Programming 5

Object-Oriented Programming

Figure 11-1 Accounting program

PHP-Object Oriented Programming 6

Understanding Encapsulation

 Objects are encapsulated – all code and

required data are contained within the object

itself

 Encapsulated objects hide all internal code

and data

 An interface refers to the methods and

properties that are required for a source

program to communicate with an object

PHP-Object Oriented Programming 7

Understanding Encapsulation

 Encapsulated objects allow users to see only

the methods and properties of the object that

you allow them to see

 Encapsulation reduces the complexity of the

code

 Encapsulation prevents other programmers

from accidentally introducing a bug into a

program, or stealing code

PHP-Object Oriented Programming 8

Object-Oriented Programming and Classes

 The code, methods, attributes, and other
information that make up an object are
organized into classes

 An instance is an object that has been
created from an existing class

 Creating an object from an existing class is
called instantiating the object

 An object inherits its methods and properties
from a class — it takes on the characteristics
of the class on which it is based

PHP-Object Oriented Programming 9

Using Objects in PHP Scripts

 Declare an object in PHP by using the new

operator with a class constructor

 A class constructor is a special function

with the same name as its class that is called

automatically when an object from the class

is instantiated

 The syntax for instantiating an object is:

$ObjectName = new ClassName();

PHP-Object Oriented Programming 10

Using Objects in PHP Scripts

 The identifiers for an object name:

 Must begin with a dollar sign

 Can include numbers or an underscore

 Cannot include spaces

 Are case sensitive

$Checking = new BankAccount();

 Can pass arguments to many constructor

functions

$Checking = new BankAccount(01234587, 1021, 97.58);

PHP-Object Oriented Programming 11

Using Objects in PHP Scripts (continued)

 After an object is instantiated, use a hyphen
and a greater-than symbol (->) to access the

methods and properties contained in the

object

 Together, these two characters are referred to

as member selection notation

 With member selection notation append one

or more characters to an object, followed by

the name of a method or property

PHP-Object Oriented Programming 12

Using Objects in PHP Scripts (continued)

 With methods, include a set of parentheses at

the end of the method name, just as with

functions

 Like functions, methods can also accept

arguments

$Checking->getBalance();

$CheckNumber = 1022;

$Checking->getCheckAmount($CheckNumber);

PHP-Object Oriented Programming 13

Working with Database Connections as Objects

 Access MySQL database connections as

objects by instantiating an object from the
mysqli class

 To connect to a MySQL database server:

$DBConnect = mysqli_connect("localhost",

"dongosselin", "rosebud", "real_estate");

 To connect to the MySQL database server

using object-oriented style:

$DBConnect = new mysqli("localhost", "dongosselin",

"rosebud", "real_estate");

PHP-Object Oriented Programming 14

Instantiating and Closing a MySQL

Database Object

 This statement also uses the mysqli()

constructor function to instantiate a mysqli

class object named $DBConnect

$DBConnect = new mysqli("localhost",

"dongosselin","rosebud", "real_estate");

 To explicitly close the database connection,
use the close() method of the mysqli

class
$DBConnect->close();

PHP-Object Oriented Programming 15

Selecting a Database

 Select or change a database with the
mysqli_select_db() function

 Pass two arguments to the
mysqli_select_db() function:

1. The variable representing the database

connection

2. The name of the database you want to use

PHP-Object Oriented Programming 16

Selecting a Database (continued)

 An object-oriented version of the code:
$DBConnect = mysqli_connect("localhost", "dongosselin",

"rosebud");

$DBConnect->select_db("real_estate");

// additional statements that access or manipulate the

database

$DBConnect->close();

PHP-Object Oriented Programming 17

Handling MySQL Errors

 With object-oriented style, you cannot
terminate script execution with the die() or

exit() functions
$DBConnect = @mysqli_connect("localhost", "dongosselin",

"rosebud")

Or die("<p>Unable to connect to the database server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

PHP-Object Oriented Programming 18

Handling MySQL Errors

 With object-oriented style, check whether a
value is assigned to the
mysqli_connect_errno() or
mysqli_connect_error() functions and
then call the die() function to terminate script
execution

$DBConnect = @new mysqli("localhost", "dgosselin",

"rosebud");

if (mysqli_connect_errno())

die("<p>Unable to connect to the database

server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

PHP-Object Oriented Programming 19

Handling MySQL Errors

 For any methods of the mysqli class that

fail (as indicated by a return value of false),

terminate script execution by appending
die() or exit() functions to method call

statements
$DBName = "guitars";

@$DBConnect->select_db($DBName)

Or die("<p>Unable to select the database.</p>"

. "<p>Error code " . mysqli_errno($DBConnect)

. ": " . mysqli_error($DBConnect)) . "</p>";

PHP-Object Oriented Programming 20

Executing SQL Statements

 With object-oriented style, use the query()

method of the mysqli class

 To return the fields in the current row of a

resultset into an indexed array use:

 The mysqli_fetch_row() function

 To return the fields in the current row of a

resultset into an associative array use:

 The mysqli_fetch_assoc() function

PHP-Object Oriented Programming 21

Executing SQL Statements (continued)

$TableName = "inventory";

$SQLstring = "SELECT * FROM inventory";

$QueryResult = $DBConnect->query($SQLstring)

Or die("<p>Unable to execute the query.</p>"

. "<p>Error code “ . $DBConnect->errno

. ": “ . $DBConnect->error) . "</p>";

echo "<table width='100%‘ border='1'>";

echo "<tr><th>Make</th><th>Model</th>

<th>Price</th><th>Inventory</th></tr>";

$Row = $QueryResult->fetch_row();

do {

echo "<tr><td>{$Row[0]}</td>";

echo "<td>{$Row[1]}</td>";

echo "<td align='right'>{$Row[2]}</td>";

echo "<td align='right'>{$Row[3]}</td></tr>";

$Row = $QueryResult->fetch_row();

} while ($Row);

PHP-Object Oriented Programming 22

Defining Custom PHP Classes

 Data structure refers to a system for

organizing data

 The functions and variables defined in a class

are called class members

 Class variables are referred to as data

members or member variables

 Class functions are referred to as member

functions or function members

PHP-Object Oriented Programming 23

Defining Custom PHP Classes

 Classes:

 Help make complex programs easier to manage

 Hide information that users of a class do not need

to access or know about

 Make it easier to reuse code or distribute your

code to others for use in their programs

 Inherited characteristics allow you to build

new classes based on existing classes

without having to rewrite the code contained

in the existing one

PHP-Object Oriented Programming 24

Creating a Class Definition

 To create a class in PHP, use the class

keyword to write a class definition

 A class definition contains the data members

and member functions that make up the class

 The syntax for defining a class is:

class ClassName {

data member and member function definitions

}

PHP-Object Oriented Programming 25

Creating a Class Definition (continued)

 The ClassName portion of the class definition

is the name of the new class

 Class names usually begin with an uppercase
letter to distinguish them from other identifiers

 Within the class’s curly braces, declare the
data type and field names for each piece of
information stored in the structure

class BankAccount {

data member and member function definitions

}

$Checking = new BankAccount();

PHP-Object Oriented Programming 26

Creating a Class Definition

 Class names in a class definition are not
followed by parentheses, as are function
names in a function definition

$Checking = new BankAccount();

echo 'The $Checking object is instantiated from the '

. get_class($Checking) . " class.</p>";

 Use the instanceof operator to determine
whether an object is instantiated from a given
class

PHP-Object Oriented Programming 27

Storing Classes in External Files

 PHP provides the following functions that

allow you to use external files in your PHP

scripts:

 include()

 require()

 include_once()

 require_once()

 You pass to each function the name and path

of the external file you want to use

PHP-Object Oriented Programming 28

Storing Classes in External Files

 include() and require() functions both

insert the contents of an external file, called

an include file, into a PHP script

 include_once() and require_once()

functions only include an external file once

during the processing of a script

 Any PHP code must be contained within a
PHP script section (<?php ... ?>) in an

external file

PHP-Object Oriented Programming 29

Storing Classes in External Files

 Use the include() and include_once()
functions for files that will not prevent the
application from running

 Use the require() or require_once()
functions for files that will prevent the app
from running if not present

 External files can be used for classes and for
any type of PHP code or HTML code that you
want to reuse on multiple Web pages

 You can use any file extension you want for
include files

PHP-Object Oriented Programming 30

Collecting Garbage

 Garbage collection refers to cleaning up or

reclaiming memory that is reserved by a

program

 PHP knows when your program no longer

needs a variable or object and automatically

cleans up the memory for you

 The one exception is with open database

connections

PHP-Object Oriented Programming 31

Information Hiding

 Information hiding states that any class
members that other programmers,
sometimes called clients, do not need to
access or know about should be hidden

 Helps minimize the amount of information
that needs to pass in and out of an object

 Reduces the complexity of the code that
clients see

 Prevents other programmers from
accidentally introducing a bug into a program
by modifying a class’s internal workings

PHP-Object Oriented Programming 32

Using Access Specifiers

 Access specifiers control a client’s access
to individual data members and member
functions

 There are three levels of access specifiers in
PHP: public, private, and protected

 The public access specifier allows anyone
to call a class’s member function or to modify
a data member

PHP-Object Oriented Programming 33

Using Access Specifiers

 The private access specifier prevents
clients from calling member functions or
accessing data members and is one of the
key elements in information hiding

 Private access does not restrict a class’s
internal access to its own members

 Private access restricts clients from
accessing class members

PHP-Object Oriented Programming 34

Using Access Specifiers

 Include an access specifier at the beginning
of a data member declaration statement

class BankAccount {

public $Balance = 0;

}

 Always assign an initial value to a data
member when you first declare it
class BankAccount {

public $Balance = 1 + 2;

}

PHP-Object Oriented Programming 35

Serializing Objects

 Serialization refers to the process of converting
an object into a string that you can store for
reuse

 This enables the sharing of objects within the same
session used by multiple scripts

 Session variables could be used but you would need
to instantiate a new object and reassign the session
variable values to the data members each time you
call a script – this could be time consuming if the
object has dozens of data members

 Serialization stores both data members and
member functions into strings

PHP-Object Oriented Programming 36

Serializing Objects

 To serialize an object, pass an object name to the
serialize() function

$SavedAccount = serialize($Checking);

 To convert serialized data back into an object, you use
the unserialize() function

$Checking = unserialize($SavedAccount);

 Serialization is also used to store the data in large

arrays

 To use serialized objects between scripts, assign a

serialized object to a session variable
session_start();

$_SESSION('SavedAccount') = serialize($Checking);

PHP-Object Oriented Programming 37

Working with Member Functions

 Create public member functions for any

functions that clients need to access

 Create private member functions for any

functions that clients do not need to access

 Access specifiers control a client’s access to

individual data members and member

functions

PHP-Object Oriented Programming 38

Working with Member Functions

class BankAccount {

public $Balance = 958.20;

public function withdrawal($Amount) {

$this->Balance -= $Amount;

}

}

if (class_exists("BankAccount"))

$Checking = new BankAccount();

else

exit("<p>The BankAccount class is not available!</p>");

printf("<p>Your checking account balance is $%.2f.</p>",

$Checking->Balance);

$Cash = 200;

$Checking->withdrawal(200);

printf("<p>After withdrawing $%.2f, your checking account

balance is $%.2f.</p>", $Cash, $Checking->Balance);

PHP-Object Oriented Programming 39

Initializing with Constructor Functions

 A constructor function is a special function
that is called automatically when an object
from a class is instantiated
class BankAccount {

private $AccountNumber;

private $CustomerName;

private $Balance;

function __construct() {

$this->AccountNumber = 0;

$this->Balance = 0;

$this->CustomerName = "";

}

PHP-Object Oriented Programming 40

Initializing with Constructor Functions

 The __construct() function takes

precedence over a function with the same

name as the class

 Constructor functions are commonly used in

PHP to handle database connection tasks

PHP-Object Oriented Programming 41

Cleaning Up with Destructor Functions

 A default constructor function is called when

a class object is first instantiated

 A destructor function is called when the

object is destroyed

 A destructor function cleans up any resources

allocated to an object after the object is

destroyed

PHP-Object Oriented Programming 42

Cleaning Up with Destructor Functions

 A destructor function is commonly called in two ways:

 When a script ends

 When you manually delete an object with
the unset() function

 To add a destructor function to a PHP class, create a function
named __destruct()

function __construct() {

$DBConnect = new mysqli("localhost",

"dongosselin","rosebud", "real_estate")

}

function __destruct() {

$DBConnect->close();

}

PHP-Object Oriented Programming 43

Writing Accessor Functions

 Accessor functions are public member

functions that a client can call to retrieve or

modify the value of a data member

 Accessor functions often begin with the

words “set” or “get”

 Set functions modify data member values

 Get functions retrieve data member values

PHP-Object Oriented Programming 44

Writing Accessor Functions (continued)

class BankAccount {

private $Balance = 0;

public function setBalance($NewValue) {

$this->Balance = $NewValue;

}

public function getBalance() {

return $this->Balance;

}

}

if (class_exists("BankAccount"))

$Checking = new BankAccount();

else

exit("<p>The BankAccount class is not available!</p>");

$Checking->setBalance(100);

echo "<p>Your checking account balance is "

. $Checking->getBalance() . "</p>";

PHP-Object Oriented Programming 45

Serialization Functions

 When you serialize an object with the
serialize() function, PHP looks in the

object’s class for a special function named
__sleep()

 The primary reason for including a
__sleep() function in a class is to specify

which data members of the class to serialize

PHP-Object Oriented Programming 46

Serialization Functions

 If you do not include a __sleep() function
in your class, the serialize() function
serializes all of its data members

function __sleep() {

$SerialVars = array('Balance');

return $SerialVars;

}

 When the unserialize() function
executes, PHP looks in the object’s class for
a special function named __wakeup()

PHP-Object Oriented Programming 47

Serialization Functions

 Problem: Create a HitCounter class that
counts the number of hits to a Web page and
stores the results in a mySQL database’

 Use a private data member to store the
number of hits and include public set and get
member functions to access the private
counter member variable

PHP-Object Oriented Programming 48

HitCounter.php
<?php

class HitCounter {

private $DBConnect;

private $DBName = "newdb";

private $TableName = "hits";

private $Hits = 0;

function __construct() {

$this->DBConnect = @new mysqli("localhost", "root", "mypassword");

if (mysqli_connect_errno())

die("<p>Unable to connect to the database server.</p>"

. "<p>Error code " . mysqli_connect_errno()

. ": " . mysqli_connect_error()) . "</p>";

}

function __destruct() {

$this->DBConnect->close();

}

public function setDatabase($Database) {

$this->DBName = $Database;

@$this->DBConnect->select_db($this->DBName)

Or die("<p>Unable to select the database.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($this->DBConnect)) . "</p>";

}

PHP-Object Oriented Programming 49

HitCounter.php
public function setTable($Table) {

$this->TableName = $Table;

}

public function setHits() {

$SQLstring = "UPDATE $this->TableName SET hits=$this->Hits WHERE
id=1";

$QueryResult = @mysqli_query($this->DBConnect, $SQLstring)

Or die("<p>Unable to perform the query.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($this->DBConnect)) . "</p>";

}

public function getHits() {

$SQLstring = "SELECT * FROM $this->TableName WHERE id=1";

$QueryResult = $this->DBConnect->query($SQLstring)

Or die("<p>Unable to perform the query.</p>"

. "<p>Error code " . mysqli_errno($this->DBConnect)

. ": " . mysqli_error($DBConnect)) . "</p>";

$Row = $QueryResult->fetch_row();

$this->Hits = $Row[1];

$this->Hits = $this->Hits + 1;

echo "<p>This page has received " . $this->Hits . " hits.</p>";

}

}

PHP-Object Oriented Programming 50

CountVisits.php
<?php

require_once("HitCounter.php");

?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>

<head>

<title>Hit Counter</title>

</head>

<body>

<h3>Hit Counter</h3>

<?php

$Database = "newdb";

$Table = "hits";

if (class_exists("HitCounter")) {

$Counter = new HitCounter();

$Counter->setDatabase($Database);

}

else

exit("<p>The HitCounter class is not available!</p>");

$Counter->setTable($Table);

$Counter->getHits();

$Counter->setHits();

?>

</body>

</html>

Thank You

Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad

Website: www.sisoft.in Email:info@sisoft.in
Phone: +91-9999-283-283

http://www.sisoft.in/

