
Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram,

Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

LEARNING TOPICS

• What is PHP?

• How PHP code looks like?

• PHP Comments, Variables

• PHP Commands (echo, print)

• Operators in PHP

• PHP Concatenation, character Escaping

• Control Structures in PHP

• Looping Structures in PHP

What is PHP?

 PHP == ‘PHP Hypertext Preprocessor’

 Open-source, server-side scripting language

 Used to generate dynamic web-pages

 PHP scripts reside between reserved PHP tags

This allows the programmer to embed PHP scripts

within HTML pages.

What is PHP (cont’d)

Interpreted language, scripts are parsed at

run-time rather than compiled beforehand

Executed on the server-side

Source-code not visible by client

‘View Source’ in browsers does not display

the PHP code

Various built-in functions allow for fast

development

Compatible with many popular databases

Advantages of PHP

Any changes to header or footer only require editing of a

single file.

This reduces the amount of work necessary for site

maintenance and redesign.

 Helps separate the content and design for easier

maintenance

Page 1

Content

Page 5

Content

Page 3

Content

Page 2

Content

Page 4

Content

Header

Footer

How PHP code looks?

Structurally similar to C/C++

Supports procedural and object-oriented

paradigm (to some degree)

All PHP statements end with a semi-colon

Each PHP script must be enclosed in the

reserved PHP tag

<?php

echo”hello

world!”;

?>

PHP Comments

 Standard C, C++, and shell comment

symbols.

// C++ and Java-style comment

Shell-style comments

/* C-style comments

These can span multiple lines */

PHP Variables

 PHP variables must begin with a “$” sign
 Case-sensitive ($Foo $foo $fOo)
 Global and locally-scoped variables
 Global variables can be used anywhere
 Local variables restricted to a function

or class
 Certain variable names reserved by PHP
 Form variables ($_POST, $_GET)
 Server variables ($_SERVER)
 Etc.

Usage of Variables

<?php

$foo = 25; // Numerical variable

$bar = “Hello”; // String variable

$foo = ($foo * 7); // Multiplies foo by 7

$bar = ($bar * 7); // Invalid expression

?>

Echo Command

The PHP command ‘echo’ is used

to output the parameters passed to

it
The typical usage for this is to send

data to the client’s web-browser

Syntax
echo string arg1 [, string

argn...]

Examples of Echo Command
<?php

$foo = 25; // Numerical variable

$bar = “Hello”; // String variable

echo $bar; // Outputs Hello

echo $foo,$bar; // Outputs 25Hello

echo “5x5=”,$foo; // Outputs 5x5=25

echo “5x5=$foo”; // Outputs 5x5=25

echo ‘5x5=$foo’; // Outputs 5x5=$foo

?>

Notice how echo ‘5x5=$foo’ outputs $foo rather than
replacing it with 25
Strings in single quotes (‘ ’) are not interpreted or
evaluated by PHP
This is true for both variables and character escape-sequences
(such as “\n” or “\\”)

Operators

Arithmetic Operations

<?php

$a=15;

$b=30;

$total=$a+$b;

Print $total;

Print “<p><h1>$total</h1>”;

// total is 45

?>

$a - $b // subtraction

$a * $b // multiplication

$a / $b // division

$a += 5 // $a = $a+5

Concatenation

 Use a period to join strings into one.

<?php

$string1=“Hello”;

$string2=“PHP”;

$string3=$string1 . “ ” . $string2;

Print $string3;

?>

Hello PHP

Character Escaping

If the string has a set of double quotation marks
that must remain visible, use the \ [backslash] before

the quotation marks to ignore and display them.

<?php

$heading=“\”Computer Science\””;

Print $heading;

?>

“Computer Science”

Control Structures in PHP
if (expr) statement

<?php

if ($a > $b) {

echo "a is bigger than b";

$b = $a;

}

?>

<?php

if ($a > $b) {

echo "a is greater than b";

} else {

echo "a is NOT greater than

b";

}

?>

PHP Control Structures

if ($link == 0) {

echo ‘The variable link is equal to 0’;

}

else if (($link > 0) && ($link <= 5)) {

echo ‘The variable link is between 1

and 5’;

}

else {

echo ‘The variable link is equal to

‘.$link;

}

PHP Control Structures

<?php

switch ($i) {

case "apple":

echo "i is apple";

break;

case "bar":

echo "i is bar";

break;

case "cake":

echo "i is cake";

break;

default:

echo ‘Enter correct option’;

}

?>

Loops

 while (condition) {statements;}

<?php

$count=0;

While($count<3)

{

Print “hi PHP. ”;

$count += 1;

// $count = $count + 1;

// or

// $count++;

?>

hi PHP. hi PHP. hi PHP.

Loops

 for (expr1; expr2; expr3)

statement

 <?php

$i = 0;

do {

echo $i;

} while ($i > 0);

?>

Loops

 <?php

$arr = array(1, 2, 3, 4);

foreach ($arr as $value) {

echo “$value \n”;

}

foreach ($arr as &$value) {

$value = $value * 2;

}

// $arr is now array(2, 4, 6, 8)

unset($value);//break the

reference

?>

Loops

 foreach ($arr as $key => $value) {

echo "Key:$key; Value:$value
\n";

}

 break ends execution of the current for,

foreach, while, do-while or switch

structure.

 continue is used within looping structures to

skip the rest of the current loop iteration and continue

execution at the condition evaluation and then the
beginning of the next iteration.

Arrays

 An array in PHP is actually an ordered map

which maps values to keys.

An array can be thought of in many ways:

Linearly indexed array , list (vector), hash table

(which is an implementation of a map),

dictionary, collection, stack (LIFO), queue (FIFO)

Arrays

Kinds of arrays:

 numeric arrays.

 associative arrays.

 multi dimensional arrays.

Arrays

 In numeric arrays each key value corresponds to

numeric values.

 They can be divided into two categories

1.automatic numeric array index.

2.manual array numeric index.

automatic numeric array index
<?php

$x=array(1,2,3);

print_r($x);

?>

o/p: array(0=>1,1=>2,2=>3)

Arrays

 Manual array numeric index

<?php

$x[2]=10; $x[3]=50;//$x=array(2=>10,3=>50);

echo $x[2]; echo $x[3];

?>

 Associative arrays

In associated arrays each ID associated with its value
<?php

$x=array(“ab”=>1,”cd”=>2,”xy”=>3);

print_r($x);

?>

Arrays

 Multidimensional Arrays-An array contains one or

more arrays
<?php

$z=array(array(10,20,30),array(40,50,

60));

print_r($z);

?>

Array ([0] => Array ([0] => 10 [1] => 20 [2] => 30)

[1] => Array ([0] => 40 [1] => 50 [2] => 60))

Arrays

<?php

$x=array(“ab”=>1,array(2,3,4),

”cd”=>8);

print_r($x);

?>

Array ([“ab”] => 1 [0] => Array ([0] => 2 [1] =>

3 [2] => 4) [”cd”] => 8)

Arrays

<?php

$x=array(3=>4,array(2,3,4),5

);

print_r($x);

?>

Array ([3] => 4 [4] => Array ([0] => 2 [1] =>

3 [2] => 4) [5] => 5)

Arrays

Array operations

 sort

 ksort

 rsort

 krsort

 array_merge

 array_combine

 array_intersect

Date Display

$datedisplay=date(“yyyy/m/d”

);

print $datedisplay;

2009/4/1

$datedisplay=date(“l, F J,

Y”);

print $datedisplay;

Wednesday, April 1, 2009

Month, Day & Date Format Symbols

M Jan

F January

m 01

n 1

Day of Month d 01

Day of Month J 1

Day of Week l Monday

Day of Week D Mon

Functions in PHP

 Functions MUST be defined before then can

be called

 Function headers are of the format

 Unlike variables, function names are not

case sensitive

function functionName($arg_1, $arg_2, …, $arg_n)

Functions example

<?php

// This is a function

function ag($arg_1, $arg_2)

{

$arg_2 = $arg_1 * $arg_2;

return $arg_2;

}

$result_1 = ag(12, 3); // Store the function

echo $result_1; // Outputs 36

echo ag(12, 3); // Outputs 36

?>

Include Files

 include “header.php”;

 include (“footer.php”);

 This inserts files; the code in files will be inserted

into current code.

 require is identical to include except upon

failure it will also produce a fatal E_COMPILE_ERROR

level error. In other words, it will halt the script whereas
include only emits a warning (E_WARNING) which

allows the script to continue.

Include Files

 The include_once statement includes and evaluates

the specified file during the execution of the script.

 This is a behavior similar to the include statement,

with the only difference being that if the code from a file

has already been included, it will not be included again.

 The require_once statement is identical to

require except PHP will check if the file has already

been included, and if so, not include (require) it again

PHP - Forms
<?php

if ($_POST["submit"])

echo "<h2>You clicked

Submit!</h2>";

else if ($_POST["cancel"])

echo "<h2>You clicked

Cancel!</h2>";

?>

<form action="form.php" method="post">

<input type="submit" name="submit"

value="Submit">

<input type="submit" name="cancel"

value="Cancel">

</form>

PHP – Forms

(Contd..)

<?php

…

$term=$_REQUEST[“sterm”];

…

?>

<form action="form.php" method="post">

<input type=“text" name=“sterm"

value=“<?= $term ?>">

</form>

