

 Introduction to Objective-C

(Other DataTypes(NSString, NSDate,
NSNumber), Protocols, Category,

Extensions)

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

The id Type
• The id type is the generic type for all Objective-C objects.
• The word ‘id’ indicates an identifier for an object much like a

pointer in c

• This uses dynamic typing

• For example, if Pen is a class…

extern id Pen;

id myPen;

myPen = [Pen new];

id work like generic pointers to objects.

The SEL Type
• The SEL data type is used to store selectors, which are

Objective-C’s internal representation of a method name

• For example, the following snippet stores a method called
sayHello in the someMethod variable.

• This variable could be used to dynamically call a method
at runtime.

• SEL someMethod = @selector(sayHello);

The classType
• Objective-C classes are represented as objects

themselves, using a special data type called Class.
• This lets you, for example, dynamically check an object’s

type at runtime.
• All classes implement a class-level method called class

that returns its associated class object
• This object can be used for introspection, which we see

with the isKindOfClass: method

NSNumber
• The NSNumber class is a lightweight, object-

oriented wrapper around C’s numeric
primitives.

• It’s main job is to store and retrieve primitive
values, and it comes with dedicated methods
for each data type

NSNumber
• NSNumber *aBool = [NSNumber numberWithBool:NO];

• NSNumber *aChar = [NSNumber numberWithChar:'z'];

• NSNumber *aUChar = [NSNumber numberWithUnsignedChar:255];

• NSNumber *aShort = [NSNumber numberWithShort:32767];

• NSNumber *aUShort = [NSNumber
numberWithUnsignedShort:65535];

• NSNumber *anInt = [NSNumber numberWithInt:2147483647];

• NSNumber *aUInt = [NSNumber
numberWithUnsignedInt:4294967295];

• NSNumber *aLong = [NSNumber
numberWithLong:9223372036854775807];

• NSNumber *aULong = [NSNumber
numberWithUnsignedLong:18446744073709551615];

• NSNumber *aFloat = [NSNumber numberWithFloat:26.99f];

• NSNumber *aDouble = [NSNumber numberWithDouble:26.99];

NSNumber
• NSNumber *aBool = [NSNumber numberWithBool:NO];

• NSNumber *aChar = [NSNumber numberWithChar:'z'];

• NSNumber *aUChar = [NSNumber numberWithUnsignedChar:255];

• NSNumber *aShort = [NSNumber numberWithShort:32767];

• NSNumber *aUShort = [NSNumber
numberWithUnsignedShort:65535];

• NSNumber *anInt = [NSNumber numberWithInt:2147483647];

• NSNumber *aUInt = [NSNumber
numberWithUnsignedInt:4294967295];

• NSNumber *aLong = [NSNumber
numberWithLong:9223372036854775807];

• NSNumber *aULong = [NSNumber
numberWithUnsignedLong:18446744073709551615];

• NSNumber *aFloat = [NSNumber numberWithFloat:26.99f];

• NSNumber *aDouble = [NSNumber numberWithDouble:26.99];

NSNumber

• NSLog(@"%@", [aBool boolValue] ? @"YES" : @"NO");

• NSLog(@"%c", [aChar charValue]);

• NSLog(@"%hhu", [aUChar unsignedCharValue]);

• NSLog(@"%hi", [aShort shortValue]);

• NSLog(@"%hu", [aUShort unsignedShortValue]);

• NSLog(@"%i", [anInt intValue]);

• NSLog(@"%u", [aUInt unsignedIntValue]);

• NSLog(@"%li", [aLong longValue]);

• NSLog(@"%lu", [aULong unsignedLongValue]);

• NSLog(@"%f", [aFloat floatValue]);

• NSLog(@"%f", [aDouble doubleValue]);

NSNumber: Comparison

• Methods

• isEqualToNumber (Returns Boolean true/false)
– if ([anInt isEqualToNumber:sameInt])

• Compare
– it returns an NSComparisonResult, which is an enum that defines the

relationship between the operands:

– Return Value Description

– NSOrderedAscending receiver < argument

– NSOrderedSame receiver == argument

– NSOrderedDescending receiver > argument

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/Reference/reference.html

NSDecimalNumber
• The NSDecimalNumber class provides fixed-

point arithmetic capabilities to Objective-C
programs.

• They’re designed to perform base-10
calculations without loss of precision and with
predictable rounding behavior.

• The following snippet creates the value 15.99
using both methods.

• NSDecimalNumber *price;

• price = [NSDecimalNumber decimalNumberWithMantissa:1599
 exponent:-2 isNegative:NO];

• price = [NSDecimalNumber decimalNumberWithString:@"15.99"];

String Object
• A string object is implemented as an array of

Unicode characters

• An immutable string is a text string that is
defined when it is created and subsequently
cannot be changed. To create and manage an
immutable string, use the NSString class

• To construct and manage a string that can be
changed after it has been created, use
NSMutableString

• The term C string refers to the standard C char
* type.

NSString
• Creating String

– Using @ contruct
• NSString *theMessage = @”hello world”;

– Using C String data
• initWithUTF8String
• NSString n1 = [[NSString alloc] initWithUTF8String: cStr]
• initWithCString
• NSString n1 = [[NSString alloc] initWithCString: cStr]

– Using format specifier (stringWithFormat: or

initWithFormat:)
• NSString *msg = [NSString stringWithFormat:@”This is %@”,

theMessage] ;

NSString: Format Specifier
Specifier Description

%@
Objective-C object, printed as the string returned by descriptionWithLocale: if available, or description otherwise. Also works with
CFTypeRef objects, returning the result of the CFCopyDescription function.

%% '%' character.

%d, %D Signed 32-bit integer (int).

%u, %U Unsigned 32-bit integer (unsigned int).

%x Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and lowercase a–f.

%X Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0–9 and uppercase A–F.

%o, %O Unsigned 32-bit integer (unsigned int), printed in octal.

%f 64-bit floating-point number (double).

%e 64-bit floating-point number (double), printed in scientific notation using a lowercase e to introduce the exponent.

%E 64-bit floating-point number (double), printed in scientific notation using an uppercase E to introduce the exponent.

%g
64-bit floating-point number (double), printed in the style of %e if the exponent is less than –4 or greater than or equal to the precision, in
the style of %f otherwise.

%G
64-bit floating-point number (double), printed in the style of %E if the exponent is less than –4 or greater than or equal to the precision, in
the style of %f otherwise.

%c
8-bit unsigned character (unsigned char), printed by NSLog() as an ASCII character, or, if not an ASCII character, in the octal format \\ddd or
the Unicode hexadecimal format \\udddd, where d is a digit.

%C
16-bit Unicode character (unichar), printed by NSLog() as an ASCII character, or, if not an ASCII character, in the octal format \\ddd or the
Unicode hexadecimal format \\udddd, where d is a digit.

%s

Null-terminated array of 8-bit unsigned characters. Because the %s specifier causes the characters to be interpreted in the system default
encoding, the results can be variable, especially with right-to-left languages. For example, with RTL, %s inserts direction markers when the
characters are not strongly directional. For this reason, it’s best to avoid %s and specify encodings explicitly.

%S Null-terminated array of 16-bit Unicode characters.

%p Void pointer (void *), printed in hexadecimal with the digits 0–9 and lowercase a–f, with a leading 0x.

%a
64-bit floating-point number (double), printed in scientific notation with a leading 0x and one hexadecimal digit before the decimal point
using a lowercase p to introduce the exponent.

%A
64-bit floating-point number (double), printed in scientific notation with a leading 0X and one hexadecimal digit before the decimal point
using a uppercase P to introduce the exponent.

%F 64-bit floating-point number (double), printed in decimal notation

NSString

• Enumerating String
– Number of characters in a string (length)

• NSUInteger charCount = [theMessage length];

– Character at a given index (characterAtIndex:)
• Unichar char = [str characterAtIndex:i];

• Comparing
– Test if 2 strings equal

• if([string_var_1 isEqual: string_var_2])
 { //code for equal case }

• Getting C String
– UTF8String returns const char *

NSStrings : Code fragment
NSString *hello = @”Hello World” ;

 NSLog (@“%@”, hello);

char *ulike = "I like you" ;

NSString *n1 ;

n1 = [[NSString alloc] initWithUTF8String:ulike];

 NSLog(@"%@", n1) ;

NSString *n2 ;

n2 = [[NSString alloc] initWithCString:ulike];

 NSLog(@"%@", n2) ;

const char *u2 = [n2 UTF8String] ;

 printf("C Style %s\n", u2) ;

NSMutableString ---Mutable

• String whose content can be changed without
forming any new object

• NSMutableString inherits from NSString, so all the
methods of NSString will apply here

 NSMutableString *ms = [[NSMutableString alloc] initWithString:@“hello”];

 [ms appendString:digit];

• (NSMutableString *)stringWithCapacity:(NSUInteger)capacity
– Returns an empty NSMutableString object with initial storage for a given number of characters.

• (NSMutableString *)initWithCapacity:(NSUInteger)capacity
– Returns an NSMutableString object initialized with initial storage for a given number of

characters

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html

NSDate
• NSDate allows you to represent an absolute

point in time.

• Date objects allow you to store absolute
points in time which are meaningful across
locales, calendars and timezones

• To get current time,

– Allocate NSDate object and initialize it with init

– Use the date method to create date object

– eg

• NSDate *now1 = [[NSDate alloc] init]

• NSDate *now2 = [NSDate date]

NSDate
• To get time other than the current time, NSDate’s

initWithTimeInterval... or dateWithTimeInterval...
Methods should be used

NSTimeInterval secondsInWeek = 7 * 24 * 60 * 60;

NSDate *nextWeek = [[NSDate alloc] initWithTimeIntervalSinceNow:secondsInWeek];

NSDate *nextWeek = [NSDate dateWithTimeInterval:secondsInWeek sinceDate:now];

• To compare dates, you can use the

– isEqualToDate: Returns a Boolean value that indicates whether a given object is an NSDate

object and exactly equal the receiver.

– compare: Returns an NSComparisonResult value that indicates the temporal ordering of the

receiver and another given date

– laterDate: Returns the later of the receiver and another given date

– earlierDate: Returns the earlier of the receiver and another given date

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/index.html

NSDate
• Create a Date From Day, Month and Year

 NSDateComponents* comps = [[NSDateComponents
alloc]init];
comps.year = 2014;
comps.month = 3;
comps.day = 31;

 NSCalendar* calendar = [NSCalendar currentCalendar];

NSDate* date = [calendar dateFromComponents:comps];

NSDate
• Convert a Date to a String:

NSDate* date = [NSDate date];

NSDateFormatter* formatter = [[NSDateFormatter alloc]init];

formatter.dateFormat = @"MMMM dd, yyyy";

NSString* dateString = [formatter stringFromDate:date];

• Convert a String to Date:
NSDateFormatter* formatter = [[NSDateFormatter alloc]init];

formatter.dateFormat = @"MMMM dd, yyyy";

NSDate* date = [formatter dateFromString:@"August 02, 2014"];

 OOPs Concepts

(Protocols, Category, Extensions)

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

 Protocols
• A protocol is a defined set of methods that a class can

choose to implement

• Objective-C protocols are the equivalent of Java
interfaces

• A protocol is effectively an interface that’s not tied to a
class. It declares a set of methods, listing their
arguments and their returns.

• Classes can then state that they’re using the protocol
in their own @interface statements

• Protocol declare methods that can implemented by any
class

• Declare methods that others are expected to
implement

Protocols Declaration

• Protocol names are enclosed in angle brackets

• A protocol is declared by declaring its
methods between @protocol and @end
compiler directives

• For the <DrawableItem> protocol, the
declaration looks like this:

@protocol DrawableItem

- (void) drawItem;

-(int) boundingBox;

- (void) setColor:(NSColor*) color;

@end

Protocols Declaration contd…

• The protocol declaration goes in a header file,
so you could put this declaration in a header
file named. anyClass.h.There is no
corresponding implementation file

• Objective-C 2.0 allows you to mark protocol
methods as either optional (@optional) or
required(@required):
– A class that adopts a protocol must implement all of the

protocol’s required methods.

– A class that adopts a protocol is free to implement or not
implement any of the protocol’s optional methods.

Adopting a Protocol

• A class can adopt a protocol by adding the
protocol name, enclosed in angle brackets, to
the class’s @interface line:

@interface myClass : NSObject <protocolName>

• A class can adopt more than one protocol. The
protocols are listed, separated by commas,
between a single set of angle brackets.

@interface myClass : NSObject <protocolName1,

 protocolName2,protocolName3>

A class adopts a protocol by implementing all
the protocol’s required methods and any or
none of the protocol’s optional methods.

Category

• Categories let you add methods to an existing
class without subclassing it and without
requiring access to the class’s source code

• Using a category to extend the behavior of a
class is a much lighter-weight procedure than
subclassing

• New method declaration is added in the
category @interface section and code for
method in @implementation section

Category -Declaration

#import <Foundation/Foundation.h>

@interface NSString (CamelCase)

-(NSString*) camelCaseString;

@end

• One big difference between a category and a
subclass is that a category cannot add any

 variables to a class. The header file reflects
this: It has no instance variable section

Class Extensions

• A class extension bears some similarity to a
category, but it can only be added to a class
for which you have the source code at compile
time (the class is compiled at the same time as
the class extension).

• The methods declared by a class extension are
implemented in the @implementation block
for the original class so you can’t, for example,
declare a class extension on a framework
class, such as a Cocoa or Cocoa Touch class
like NSString.

Class Extensions

• The syntax to declare a class extension is
similar to the syntax for a category, and looks
like this:

@interface ClassName ()

@end

• Because no name is given in the parentheses,
class extensions are often referred to as
anonymous categories .

