

 Introduction to Objective-C

(Other DataTypes(NSString, NSDate,
NSNumber), Protocols, Category,

Extensions)

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

The id Type
ÅThe id type is the generic type for all Objective-C objects.
Å The word id indicates an identifier for an object much like a

pointer in c

Å This uses dynamic typing

ÅFor example, if Pen is a class…

extern id Pen;

id myPen;

myPen = [Pen new];

id work like generic pointers to objects.

The SEL Type
ÅThe SEL data type is used to store selectors, which are

Objective-C’s internal representation of a method name

Å For example, the following snippet stores a method called
sayHello in the someMethod variable.

ÅThis variable could be used to dynamically call a method
at runtime.

ÅSEL someMethod = @selector(sayHello);

The classType
ÅObjective-C classes are represented as objects

themselves, using a special data type called Class.
ÅThis lets you, for example, dynamically check an object’s

type at runtime.
ÅAll classes implement a class-level method called class

that returns its associated class object
ÅThis object can be used for introspection, which we see

with the isKindOfClass: method

NSNumber
ÅThe NSNumber class is a lightweight, object-

oriented wrapper around C’s numeric
primitives.

ÅIt’s main job is to store and retrieve primitive
values, and it comes with dedicated methods
for each data type

NSNumber
Å NSNumber *aBool = [NSNumber numberWithBool:NO];

Å NSNumber *aChar = [NSNumber numberWithChar:'z'];

Å NSNumber *aUChar = [NSNumber numberWithUnsignedChar:255];

Å NSNumber *aShort = [NSNumber numberWithShort:32767];

Å NSNumber *aUShort = [NSNumber
numberWithUnsignedShort:65535];

Å NSNumber *anInt = [NSNumber numberWithInt:2147483647];

Å NSNumber *aUInt = [NSNumber
numberWithUnsignedInt:4294967295];

Å NSNumber *aLong = [NSNumber
numberWithLong:9223372036854775807];

Å NSNumber *aULong = [NSNumber
numberWithUnsignedLong:18446744073709551615];

Å NSNumber *aFloat = [NSNumber numberWithFloat:26.99f];

Å NSNumber *aDouble = [NSNumber numberWithDouble:26.99];

NSNumber
Å NSNumber *aBool = [NSNumber numberWithBool:NO];

Å NSNumber *aChar = [NSNumber numberWithChar:'z'];

Å NSNumber *aUChar = [NSNumber numberWithUnsignedChar:255];

Å NSNumber *aShort = [NSNumber numberWithShort:32767];

Å NSNumber *aUShort = [NSNumber
numberWithUnsignedShort:65535];

Å NSNumber *anInt = [NSNumber numberWithInt:2147483647];

Å NSNumber *aUInt = [NSNumber
numberWithUnsignedInt:4294967295];

Å NSNumber *aLong = [NSNumber
numberWithLong:9223372036854775807];

Å NSNumber *aULong = [NSNumber
numberWithUnsignedLong:18446744073709551615];

Å NSNumber *aFloat = [NSNumber numberWithFloat:26.99f];

Å NSNumber *aDouble = [NSNumber numberWithDouble:26.99];

NSNumber

ÅNSLog(@"%@", [aBool boolValue] ? @"YES" : @"NO");

ÅNSLog(@"%c", [aChar charValue]);

ÅNSLog(@"%hhu", [aUChar unsignedCharValue]);

Å NSLog(@"%hi", [aShort shortValue]);

ÅNSLog(@"%hu", [aUShort unsignedShortValue]);

Å NSLog(@"%i", [anInt intValue]);

ÅNSLog(@"%u", [aUInt unsignedIntValue]);

ÅNSLog(@"%li", [aLong longValue]);

ÅNSLog(@"%lu", [aULong unsignedLongValue]);

ÅNSLog(@"%f", [aFloat floatValue]);

ÅNSLog(@"%f", [aDouble doubleValue]);

NSNumber: Comparison

ÅMethods

Å isEqualToNumber (Returns Boolean true/false)
ï if ([anInt isEqualToNumber:sameInt])

ÅCompare
ï it returns an NSComparisonResult, which is an enum that defines the

relationship between the operands:

ïReturn Value Description

ïNSOrderedAscending receiver < argument

ïNSOrderedSame receiver == argument

ïNSOrderedDescending receiver > argument

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/Reference/reference.html

NSDecimalNumber
ÅThe NSDecimalNumber class provides fixed-

point arithmetic capabilities to Objective-C
programs.

ÅThey’re designed to perform base-10
calculations without loss of precision and with
predictable rounding behavior.

ÅThe following snippet creates the value 15.99
using both methods.

Å NSDecimalNumber *price;

Å price = [NSDecimalNumber decimalNumberWithMantissa:1599
 exponent:-2 isNegative:NO];

Å price = [NSDecimalNumber decimalNumberWithString:@"15.99"];

String Object
ÅA string object is implemented as an array of

Unicode characters

ÅAn immutable string is a text string that is
defined when it is created and subsequently
cannot be changed. To create and manage an
immutable string, use the NSString class

ÅTo construct and manage a string that can be
changed after it has been created, use
NSMutableString

ÅThe term C string refers to the standard C char
* type.

NSString
ÅCreating String
ïUsing @ contruct
ÅNSString *theMessage = @ hello world ;

ï Using C String data
ÅinitWithUTF8String
ÅNSString n1 = [[NSString alloc] initWithUTF8String: cStr]
ÅinitWithCString
ÅNSString n1 = [[NSString alloc] initWithCString: cStr]

ïUsing format specifier (stringWithFormat: or

initWithFormat:)
ÅNSString *msg = [NSString stringWithFormat:@”This is %@”,

theMessage] ;

NSString: Format Specifier
Specifier Description

%@
Objective-C object, printed as the string returned by descriptionWithLocale: if available, or description otherwise. Also works with
CFTypeRef objects, returning the result of the CFCopyDescription function.

%% '%' character.

%d, %D Signed 32-bit integer (int).

%u, %U Unsigned 32-bit integer (unsigned int).

%x Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0ς9 and lowercase aςf.

%X Unsigned 32-bit integer (unsigned int), printed in hexadecimal using the digits 0ς9 and uppercase AςF.

%o, %O Unsigned 32-bit integer (unsigned int), printed in octal.

%f 64-bit floating-point number (double).

%e 64-bit floating-point number (double), printed in scientific notation using a lowercase e to introduce the exponent.

%E 64-bit floating-point number (double), printed in scientific notation using an uppercase E to introduce the exponent.

%g
64-bit floating-point number (double), printed in the style of %e if the exponent is less than ς4 or greater than or equal to the precision, in
the style of %f otherwise.

%G
64-bit floating-point number (double), printed in the style of %E if the exponent is less than ς4 or greater than or equal to the precision, in
the style of %f otherwise.

%c
8-bit unsigned character (unsigned char), printed by NSLog() as an ASCII character, or, if not an ASCII character, in the octal format \ \ ddd or
the Unicode hexadecimal format \ \ udddd, where d is a digit.

%C
16-bit Unicode character (unichar), printed by NSLog() as an ASCII character, or, if not an ASCII character, in the octal format \ \ ddd or the
Unicode hexadecimal format \ \ udddd, where d is a digit.

%s

Null-terminated array of 8-bit unsigned characters. Because the %s specifier causes the characters to be interpreted in the system default
encoding, the results can be variable, especially with right-to-left languages. For example, with RTL, %s inserts direction markers when the
characters are not strongly directional. For this reason, itΩs best to avoid %s and specify encodings explicitly.

%S Null-terminated array of 16-bit Unicode characters.

%p Void pointer (void *), printed in hexadecimal with the digits 0ς9 and lowercase aςf, with a leading 0x.

%a
64-bit floating-point number (double), printed in scientific notation with a leading 0x and one hexadecimal digit before the decimal point
using a lowercase p to introduce the exponent.

%A
64-bit floating-point number (double), printed in scientific notation with a leading 0X and one hexadecimal digit before the decimal point
using a uppercase P to introduce the exponent.

%F 64-bit floating-point number (double), printed in decimal notation

NSString

ÅEnumerating String
ïNumber of characters in a string (length)
ÅNSUInteger charCount = [theMessage length];

ïCharacter at a given index (characterAtIndex:)
ÅUnichar char = [str characterAtIndex:i];

ÅComparing
ïTest if 2 strings equal
Åif([string_var_1 isEqual: string_var_2])

 { //code for equal case }

ÅGetting C String
ïUTF8String returns const char *

NSStrings : Code fragment
NSString *hello = @Hello World ;

 NSLog (@%@ , hello);

char *ulike = "I like you" ;

NSString *n1 ;

n1 = [[NSString alloc] initWithUTF8String:ulike];

 NSLog(@"%@", n1) ;

NSString *n2 ;

n2 = [[NSString alloc] initWithCString:ulike];

 NSLog(@"%@", n2) ;

const char *u2 = [n2 UTF8String] ;

 printf("C Style %s\n", u2) ;

NSMutableString ---Mutable

ÅString whose content can be changed without
forming any new object

ÅNSMutableString inherits from NSString, so all the
methods of NSString will apply here

 NSMutableString *ms = [[NSMutableString alloc] initWithString:@hello];

 [ms appendString:digit];

Å (NSMutableString *)stringWithCapacity:(NSUInteger)capacity
ï Returns an empty NSMutableString object with initial storage for a given number of characters.

Å (NSMutableString *)initWithCapacity:(NSUInteger)capacity
ï Returns an NSMutableString object initialized with initial storage for a given number of

characters

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html
https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_DataTypes/index.html

NSDate
ÅNSDate allows you to represent an absolute

point in time.

ÅDate objects allow you to store absolute
points in time which are meaningful across
locales, calendars and timezones

ÅTo get current time,

ï Allocate NSDate object and initialize it with init

ï Use the date method to create date object

ïeg

ÅNSDate *now1 = [[NSDate alloc] init]

ÅNSDate *now2 = [NSDate date]

NSDate
ÅTo get time other than the current time, NSDate’s

initWithTimeInterval... or dateWithTimeInterval...
Methods should be used

NSTimeInterval secondsInWeek = 7 * 24 * 60 * 60;

NSDate *nextWeek = [[NSDate alloc] initWithTimeIntervalSinceNow:secondsInWeek];

NSDate *nextWeek = [NSDate dateWithTimeInterval:secondsInWeek sinceDate:now];

ÅTo compare dates, you can use the

ïisEqualToDate: Returns a Boolean value that indicates whether a given object is an NSDate

object and exactly equal the receiver.

ïcompare: Returns an NSComparisonResult value that indicates the temporal ordering of the

receiver and another given date

ïlaterDate: Returns the later of the receiver and another given date

ïearlierDate: Returns the earlier of the receiver and another given date

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Miscellaneous/Foundation_Constants/index.html

NSDate
ÅCreate a Date From Day, Month and Year

 NSDateComponents* comps = [[NSDateComponents
alloc]init];
comps.year = 2014;
comps.month = 3;
comps.day = 31;

 NSCalendar* calendar = [NSCalendar currentCalendar];

NSDate* date = [calendar dateFromComponents:comps];

NSDate
ÅConvert a Date to a String:

NSDate* date = [NSDate date];

NSDateFormatter* formatter = [[NSDateFormatter alloc]init];

formatter.dateFormat = @"MMMM dd, yyyy";

NSString* dateString = [formatter stringFromDate:date];

ÅConvert a String to Date:
NSDateFormatter* formatter = [[NSDateFormatter alloc]init];

formatter.dateFormat = @"MMMM dd, yyyy";

NSDate* date = [formatter dateFromString:@"August 02, 2014"];

 OOPs Concepts

(Protocols, Category, Extensions)

 Sisoft Technologies Pvt Ltd

SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

http://www.sisoft.in/

 Protocols
ÅA protocol is a defined set of methods that a class can

choose to implement

ÅObjective-C protocols are the equivalent of Java
interfaces

ÅA protocol is effectively an interface thats not tied to a
class. It declares a set of methods, listing their
arguments and their returns.

ÅClasses can then state that theyre using the protocol
in their own @interface statements

ÅProtocol declare methods that can implemented by any
class

ÅDeclare methods that others are expected to
implement

Protocols Declaration

ÅProtocol names are enclosed in angle brackets

ÅA protocol is declared by declaring its
methods between @protocol and @end
compiler directives

ÅFor the <DrawableItem> protocol, the
declaration looks like this:

@protocol DrawableItem

- (void) drawItem;

-(int) boundingBox;

- (void) setColor:(NSColor*) color;

@end

Protocols Declaration contd…

ÅThe protocol declaration goes in a header file,
so you could put this declaration in a header
file named. anyClass.h.There is no
corresponding implementation file

ÅObjective-C 2.0 allows you to mark protocol
methods as either optional (@optional) or
required(@required):
ïA class that adopts a protocol must implement all of the

protocol s required methods.

ïA class that adopts a protocol is free to implement or not
implement any of the protocols optional methods.

Adopting a Protocol

ÅA class can adopt a protocol by adding the
protocol name, enclosed in angle brackets, to
the class’s @interface line:

@interface myClass : NSObject <protocolName>

ÅA class can adopt more than one protocol. The
protocols are listed, separated by commas,
between a single set of angle brackets.

@interface myClass : NSObject <protocolName1,

 protocolName2,protocolName3>

A class adopts a protocol by implementing all
the protocol s required methods and any or
none of the protocols optional methods.

Category

ÅCategories let you add methods to an existing
class without subclassing it and without
requiring access to the classs source code

ÅUsing a category to extend the behavior of a
class is a much lighter-weight procedure than
subclassing

ÅNew method declaration is added in the
category @interface section and code for
method in @implementation section

Category -Declaration

#import <Foundation/Foundation.h>

@interface NSString (CamelCase)

-(NSString*) camelCaseString;

@end

ÅOne big difference between a category and a
subclass is that a category cannot add any

 variables to a class. The header file reflects
this: It has no instance variable section

Class Extensions

ÅA class extension bears some similarity to a
category, but it can only be added to a class
for which you have the source code at compile
time (the class is compiled at the same time as
the class extension).

ÅThe methods declared by a class extension are
implemented in the @implementation block
for the original class so you can’t, for example,
declare a class extension on a framework
class, such as a Cocoa or Cocoa Touch class
like NSString.

Class Extensions

ÅThe syntax to declare a class extension is
similar to the syntax for a category, and looks
like this:

@interface ClassName ()

@end

ÅBecause no name is given in the parentheses,
class extensions are often referred to as
anonymous categories .

