

Location And Maps

Sisoft Technologies Pvt Ltd
SRC E7, Shipra Riviera Bazar, Gyan Khand-3, Indirapuram, Ghaziabad
Website: www.sisoft.in Email:info@sisoft.in

Phone: +91-9999-283-283

Core Location

- Core Location framework is used to determine the current latitude and longitude of a device
- To use the features of the Core Location framework, you must link your app to CoreLocation.framework in your Xcode project
- To access the classes and headers of the framework, include an #import
 CoreLocation/CoreLocation.h> statement at the top of any relevant source files.

Core Location

There are three technologies that core location uses :

— GPS

Reads microwave signals from multiple satellites to determine the current location

Cell Tower Triangulation

Determine the current location by calculation based on location of cell towers in iPhone's range.

Wi-Fi positioning Service (WPS)

Uses IP address from iPhone's Wi-Fi connection by referencing database of service providers and areas they service

CLLocationManager

- This class defines the interface for configuring the delivery of location-related events to your application
- To interact with core location we need to create an instance of Location Manager
 - CLLocationManager *locationManager =[[CLLocationManager alloc]init];
- When you are ready to start polling for location, you tell the location manager to start
 - [locationManager startUpdatingLocation];

Setting Desired Accuracy

- The accuracy is set using CLLocationAccuracy
 Value, a type that's defined as double
 - kCLLocationAccuracyBest
 - kCLLocationAccuracyNearestTenMeters
 - kCLLocationAccuracyHundredMetres
 - kCLLocationAccuracyKilometers
 - kCLLocationAccuracyThreeKilometers
- Setting Delegate and Accuracy:

locationManager.delegate=self;

locationManager.desiredAccuracy= kCLLocationAccuracyBest

Setting Distance Filter

- By specifying distance filter you can tell Location manager not to notify for every change in location but to only notify you when location changes by certain amount
- Specifying a distance filter of 1000 tells location manager not to notify the delegate until the iPhone has moved at least 1000 meters from previously reported position
- For example:

locationManager.distanceFilter=1000.0f;

Location Object (CLLocation)

- Represents the location data generated by a CLLocationManager object
- The latitude and longitude are stored in property called coordinate
 - CLLocationDegress latitude=theLocation.coordinate.latitude
 - CLLocationDegress latitude=theLocation.coordinate.latitude
- The CLLocation object also has a property called altitude that tell you how many metres above the sea level you are:
 - -CLLocationDistance altiude=theLocation.altitude

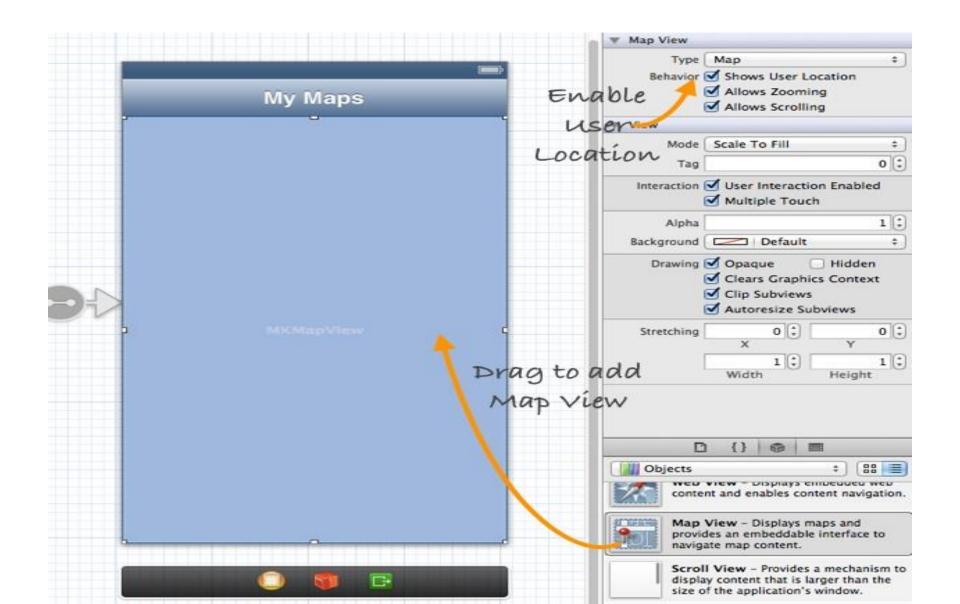
- The location manager must confirms to CLLocationManagerDelegate protocol, which defines two methods, both are optional
- One method is called by location manager when it has determined current location or detects any change in location:

locationManager:didUpdateToLocation:fromLocation

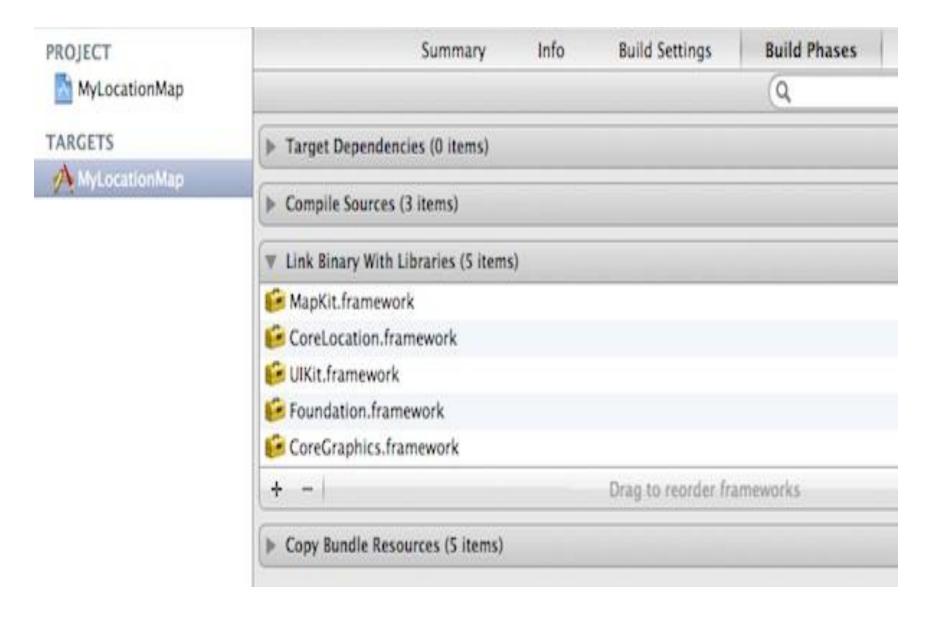
 Other method is called when location manager encounters an error:

locationManager:didFailWithError

iOS Simulator Carrier	- iPhone (Retina 4-inch) / iOS 6 3:38 PM
Longitude	-122.40641700
latitude	37.78583400
distance	0.00000000
	getLocation


MapKit

- Maps are provided by the Map Kit framework, which supports both the display and annotation of maps
- Plan
 - Adding MapKit to your iPhone Application
 - Setting and zooming the Position
 - Annotations
 - Geocoding



Adding Framework

MKMapViewDelegate protocol

- The MKMapViewDelegate protocol defines a set of optional methods that you can use to receive map-related update messages
- The MKMapViewDelegate protocol have methods for:
 - Responding to Map Position Changes
 - Loading the Map Data
 - Tracking the User Location
 - Managing Annotation Views
 - Managing the Display of Overlays

Map Region to Display

- A structure that defines which portion of the map to display.
- Set the region property (MKCoordinateRegion)
- Define the center point and a span
- Span defines the vertical & horizontal distance to display (zoom)

```
{ MKCoordinateRegion region; region.center.latitude = [eventVenue.latitude doubleValue]; region.center.longitude = [eventVenue.longitude doubleValue]; region.span.latitudeDelta = 0.0039; region.span.longitudeDelta = 0.0034; //zoom ~.3 miles mapView.region = region; }
```

Annotations

- Annotations offer a way to highlight specific coordinates on the map and provide additional information about them
- In order to display an annotation on a map, your app must provide two distinct objects:
 - An object that conforms to the MKAnnotation protocol and manages the data for the annotation(annotation object)
 - A view used to draw the visual representation of the annotation(annotation view)

MKPointAnnotation

- // Add an annotation
 - MKPointAnnotation *point =[[MKPointAnnotation alloc] init];
 - point.coordinate =
 userLocation.coordinate; point
 .title = @"Where am I?";
 - point.subtitle = @"I'm
 here!!!"; [self.mapView
 addAnnotation:point];

CLGeocoder

- The CLGeocoder class provides services for converting between a GPS coordinate and the user-readable address of that coordinate
- By specify the latitude and longitude of a given location, you can use CLGeocoder to find a user-readable address
- The result (i.e. the address) returned by CLGeocoder is saved in a CLPlacemark object